全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

隐睾不育的分子基础

, PP. 899-908

Keywords: 隐睾,精子发生,细胞凋亡,热激,支持细胞,血睾屏障,紧密连接

Full-Text   Cite this paper   Add to My Lib

Abstract:

隐睾症或热局部处理猴和大鼠睾丸,能引起可逆性生精细胞凋亡,出现少精或无精现象.43℃局部热浴猴睾丸可引起精液中精子数量发生可逆性减少.睾丸支持细胞为生精细胞提供结构支持与营养供给.生精上皮中支持细胞间以及支持细胞和各级生精细胞间的特殊连接在精子发生中起着至关重要的作用.本研究组发现,热处理后紧密连接分子,如occludin,zonulaoccludens-1(ZO-1)在24~48h表达明显下降,血睾屏障(blood-testisbarrier,BTB)发生了可逆性破坏.该过程还伴随着TGF-β2和TGF-β3表达增高,p38MAPK和ERK/MAPK信号通路激活.由此推测,热激可能通过引发TGF-bs增高,下调紧密连接相关蛋白的表达,导致细胞连接减弱,从而引起BTB结构发生可逆性紊乱.此外,本文还综述了成年小鼠实验性隐睾睾丸中总基因的表达变化,成功克隆了几个生理功能显著,与精子发生特异相关的新基因.

References

[1]  25 Kaitu''u-Lino T J, Sluka P, Foo C F, et al. Claudin-11 expression and localisation is regulated by androgens in rat sertoli cells in vitro.
[2]  Reproduction, 2007, 133: 1169—1179
[3]  26 Sluka P, O''Donnell L, Bartles J R, et al. FSH regulates the formation of adherens junctions and ectoplasmic specialisations between rat
[4]  sertoli cells in vitro and in vivo. J Endocrinol, 2006, 189: 381—395
[5]  27 Tarulli G A, Stanton P G, Lerchl A, et al. Adult sertoli cells are not terminally differentiated in the djungarian hamster: effect of fsh on
[6]  proliferation and junction protein organization. Biol Reprod, 2006, 74: 798—806
[7]  28 Chung N P, Cheng C Y. Is cadmium chloride-induced inter-sertoli tight junction permeability barrier disruption a suitable in vitro model to
[8]  study the events of junction disassembly during spermatogenesis in the rat testis? Endocrinology, 2001, 142: 1878—1888
[9]  29 Li Y C, Hu X Q, Xiao L J, et al. An oligonucleotide microarray study on gene expression profile in mouse testis of experimental
[10]  cryptorchidism. Front Biosci, 2006, 11: 2465—2482
[11]  17: 187—200
[12]  334—339
[13]  37 Venkatachalam P S, Ramanathan K S. Effect of moderate heat on the testes of rats and monkeys. J Reprod Fertil, 1962, 4: 51—56
[14]  38 Jones T M, Anderson W, Fang V S, et al. Experimental cryptorchidism in adult male rats: histological and hormonal sequelae. Anat Rec,
[15]  1977, 189: 1—27
[16]  39 Hezmall H P, Lipshultz L I. Cryptorchidism and infertility. Urol Clin North Am, 1982, 9: 361—369
[17]  40 Setchell B P. The Parkes Lecture. Heat and the testis. J Reprod Fertil, 1998, 114: 179—194
[18]  41 Kandeel F R, Swerdloff R S. Role of temperature in regulation of spermatogenesis and the use of heating as a method for contraception.
[19]  Fertil Steril, 1988, 49: 1—23
[20]  42 Zhang X S, Lue Y H, Guo S H, et al. Expression of HSP105 and HSP60 during germ cell apoptosis in the heat-treated testes of adult
[21]  cynomolgus monkeys (Macaca fascicularis). Front Biosci, 2005, 10: 3110—3121
[22]  43 Lue Y, Wang C, Liu Y X, et al. Transient testicular warming enhances the suppressive effect of testosterone on spermatogenesis in adult
[23]  cynomolgus monkeys (Macaca fascicularis). J Clin Endocrinol Metab, 2006, 91: 539—545
[24]  44 Zhang Z H, Jin X, Zhang X S, et al. Bcl-2 and Bax are involved in experimental cryptorchidism-induced testicular germ cell apoptosis in
[25]  46 Guo J, Jia Y, Tao S X, et al. Expression of nitric oxide synthase during germ cell apoptosis in testis of cynomolgus monkey after
[26]  testosterone and heat treatment. J Androl, 2009, 30: 190—199
[27]  47 Chen M, Yuan J X, Shi Y Q, et al. Effect of 43 degrees treatment on expression of heat shock proteins 105, 70 and 60 in cultured monkey
[28]  Sertoli cells. Asian J Androl, 2008, 10: 474—485
[29]  55 Guo C X, Tang T S, Mu X M, et al. Cloning of novel temperature-related expressed sequence tags in rat testis during spermatogenesis.
[30]  Biochem Biophys Res Commun, 1999, 258: 401—406
[31]  56 Han X B, Zhou X C, Hu Z Y, et al. Cloning and characterization of temperature-related gene TRS1. Arch Androl, 2002, 48: 273—280
[32]  57 Shi Y Q, Li Y C, Hu X Q, et al. Male germ cell-specific protein Trs4 binds to multiple proteins. Biochem Biophys Res Commun, 2009, 388:
[33]  583—588
[34]  58 Cheng C Y, Mruk D D. Cell junction dynamics in the testis: sertoli-germ cell interactions and male contraceptive development. Physiol Rev,
[35]  2002, 82: 825—874
[36]  59 Chen M, Cai H, Yang J L, et al. Effect of heat stress on expression of junction-associated molecules and upstream factors androgen receptor
[37]  and Wilms'' tumor 1 in monkey sertoli cells. Endocrinology, 2008, 149: 4871—4882
[38]  60 Zhang X S, Zhang Z H, Guo S H, et al. Activation of extracellular signal-related kinases 1 and 2 in Sertoli cells in experimentally
[39]  cryptorchid rhesus monkeys. Asian J Androl, 2006, 8: 265—272
[40]  61 Guo J, Tao S X, Chen M, et al. Heat treatment induces liver receptor homolog-1 expression in monkey and rat Sertoli cells. Endocrinology,
[41]  2007, 148: 1255—1265
[42]  62 Tan K A, De Gendt K, Atanassova N, et al. The role of androgens in sertoli cell proliferation and functional maturation: studies in mice with
[43]  total or Sertoli cell-selective ablation of the androgen receptor. Endocrinology, 2005, 146: 2674—2683
[44]  63 Scharnhorst V, van der Eb A J, Jochemsen A G. WT1 proteins: functions in growth and differentiation. Gene, 2001, 273: 141—161
[45]  64 Lim H N, Hughes I A, Hawkins J R. Clinical and molecular evidence for the role of androgens and WT1 in testis descent. Mol Cell
[46]  Endocrinol, 2001, 185: 43—50
[47]  65 Vornberger W, Prins G, Musto N A, et al. Androgen receptor distribution in rat testis: new implications for androgen regulation of
[48]  spermatogenesis. Endocrinology, 1994, 134: 2307—2316
[49]  71 Li M W, Xia W, Mruk D D, et al. Tumor necrosis factor {alpha} reversibly disrupts the blood-testis barrier and impairs sertoli-germ cell
[50]  adhesion in the seminiferous epithelium of adult rat testes. J Endocrinol, 2006, 190: 313—329
[51]  13 Bart J, Groen H J, van der Graaf W T, et al. An oncological view on the blood-testis barrier. Lancet Oncol, 2002, 3: 357—363
[52]  14 Pelletier R M, Byers S W. The blood-testis barrier and sertoli cell junctions: structural considerations. Microsc Res Tech, 1992, 20: 3—33
[53]  15 Lui W Y, Mruk D, Lee W M, et al. Sertoli cell tight junction dynamics: their regulation during spermatogenesis. Biol Reprod, 2003, 68:
[54]  1087—1097
[55]  16 Meng J, Holdcraft R W, Shima J E, et al. Androgens regulate the permeability of the blood-testis barrier. Proc Natl Acad Sci USA, 2005,
[56]  102: 16696—16700
[57]  17 Tarulli G A, Meachem S J, Schlatt S, et al. Regulation of testicular tight junctions by gonadotrophins in the adult djungarian hamster in vivo.
[58]  Reproduction, 2008, 135: 867—877
[59]  18 Lui W Y, Lee W M, Cheng C Y. Tgf-betas: their role in testicular function and sertoli cell tight junction dynamics. Int J Androl, 2003, 26:
[60]  30 Kormano M. Development of the rectum-testis temperature difference in the post-natal rat. J Reprod Fertil, 1967, 14: 427—437
[61]  31 Mieusset R, Bujan L. Testicular heating and its possible contributions to male infertility: a review. Int J Androl, 1995,18: 169—184
[62]  32 Davis J R, Firlit C F. The germinal epithelium of cryptorchid testes experimentally induced in prepubertal and adult rats. Fertil Steril, 1966,
[63]  33 Wang R, Chang J S, Zhou X M, et al. Varicocele in the rat: a new experimental model. Effect on histology, ultrastructure and temperature of
[64]  the testis and the epididymis. Urol Res, 1991, 19: 319—322
[65]  34 Lue Y H, Lasley B L, Laughlin L S, et al. Mild testicular hyperthermia induces profound transitional spermatogenic suppression through
[66]  increased germ cell apoptosis in adult cynomolgus monkeys (Macaca fascicularis). J Androl, 2002, 23: 799—805
[67]  35 Dada R, Gupta N P, Kucheria K. Spermatogenic arrest in men with testicular hyperthermia. Teratog Carcinog Mutagen, 2003, Suppl 1: 235—243
[68]  36 Wang C, McDonald V, Leung A, et al. Effect of increased scrotal temperature on sperm production in normal men. Fertil Steril, 1997, 6:
[69]  rhesus monkey. Contraception, 2003, 68: 297—301
[70]  45 Johnson C, Jia Y, Wang C, et al. Role of caspase 2 in apoptotic signaling in primate and murine germ cells. Biol Reprod, 2008, 79: 806—814
[71]  48 Jia Y, Hikim A P, Lue Y H, et al. Signaling pathways for germ cell death in adult cynomolgus monkeys (Macaca fascicularis) induced by
[72]  mild testicular hyperthermia and exogenous testosterone treatment. Biol Reprod, 2007, 77: 83—92
[73]  49 Zhou X C, Han X B, Hu Z Y, et al. Expression of Hsp70-2 in unilateral cryptorchid testis of rhesus monkey during germ cell apoptosis.
[74]  Endocrine, 2001, 16: 89—95
[75]  50 Li Y C, Hu X Q, Zhang K Y, et al. Afaf, a novel vesicle membrane protein, is related to acrosome formation in murine testis. FEBS Lett,
[76]  2006, 580: 4266—4273
[77]  51 Hu X Q, Ji S Y, Li Y C, et al. Acrosome formation-associated factor is involved in fertilization. Fertil Steril, 2010, 93: 1482—1492
[78]  52 Liu T, Huang J C, Lu C L, et al. Immunization with a DNA vaccine of testis-specific sodium-hydrogen exchanger by oral feeding or nasal
[79]  instillation reduces fertility in female mice. Fertil Steril, 2010, 93: 1556—1566
[80]  53 Liu T, Huang J C, Zuo W L, et al. A novel testis-specific Na+/H+ exchanger is involved in sperm motility and fertility. Front Biosci, 2010, 2:
[81]  566—581
[82]  54 Song X X, Li Y C, Shi Y Q, et al. Cloning and characterization of a novel spermiogenesis-related gene, T6441, in rat testis. Front Biosci,
[83]  2006, 11: 143—150
[84]  66 Furuse M, Itoh M, Hirase T, et al. Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at
[85]  tight junctions. J Cell Biol, 1994, 127: 1617—1626
[86]  67 Armstrong J F, Pritchard-Jones K, Bickmore W A, et al. The expression of the Wilms'' tumour gene, WT1, in the developing mammalian
[87]  embryo. Mech Dev, 1993, 40: 85—97
[88]  68 Gao F, Maiti S, Alam N, et al. The Wilms tumor gene, Wt1, is required for Sox9 expression and maintenance of tubular architecture in the
[89]  developing testis. Proc Natl Acad Sci USA, 2006, 103: 11987—11992
[90]  69 Rao M K, Pham J, Imam J S, et al. Tissue-specific RNAi reveals that WT1 expression in nurse cells controls germ cell survival and
[91]  spermatogenesis. Genes Dev, 2006, 20: 147—152
[92]  70 Pajonk F, van Ophoven A, McBride W H. Hyperthermia-induced proteasome inhibition and loss of androgen receptor expression in human
[93]  prostate cancer cells. Cancer Res, 2005, 65: 4836—4843
[94]  1 Danno S, Itoh K, Matsuda T, et al. Decreased expression of mouse rbm3, a cold-shock protein, in sertoli cells of cryptorchid testis. Am J
[95]  Pathol, 2000, 156: 1685—1692
[96]  2 Hikim A P, Lue Y, Yamamoto C M, et al. Key apoptotic pathways for heat-induced programmed germ cell death in the testis.
[97]  Endocrinology, 2003, 144: 3167—3175
[98]  3 Lue Y H, Hikim A P, Swerdloff R S, et al. Single exposure to heat induces stage-specific germ cell apoptosis in rats: role of intratesticular
[99]  testosterone on stage specificity. Endocrinology, 1999, 140: 1709—1717
[100]  4 Kerr J B, Rich K A, Kretser D M D. Effects of experimental cryptorchidism on the ultrastructure and function of the sertoli-cell and
[101]  peritubular tissue of the rat testis. Biol Reprod, 1979, 21: 823—838
[102]  5 Zhang Z H, Hu Z Y, Song X X, et al. Disrupted expression of intermediate filaments in the testis of rhesus monkey after experimental
[103]  cryptorchidism. Int J Androl, 2004, 27: 234—239
[104]  6 Zhang X S, Zhang Z H, Jin X, et al. Dedifferentiation of adult monkey sertoli cells through activation of extracellularly regulated kinase 1/2
[105]  induced by heat treatment. Endocrinology, 2006, 147: 1237—1245
[106]  7 Griswold M D. Interactions between germ cells and sertoli cells in the testis. Biol Reprod, 1995, 52: 211—216
[107]  8 Skinner M K. Cell-cell interactions in the testis. Endocr Rev, 1991, 12: 45—77
[108]  9 Dym M, Fawcett D W. The blood-testis barrier in the rat and the physiological compartmentation of the seminiferous epithelium. Biol
[109]  Reprod, 1970, 3: 308—326
[110]  10 Mruk D D, Cheng C Y. Sertoli-sertoli and sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous
[111]  epithelium during spermatogenesis. Endocr Rev, 2004, 25: 747—806
[112]  11 Saitou M, Furuse M, Sasaki H, et al. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell,
[113]  2000, 11: 4131—4142
[114]  12 Chung N P, Mruk D, Mo M Y, et al. A 22-amino acid synthetic peptide corresponding to the second extracellular loop of rat occludin
[115]  perturbs the blood-testis barrier and disrupts spermatogenesis reversibly in vivo. Biol Reprod, 2001, 65: 1340—1351
[116]  147—160
[117]  19 Lui W Y, Wong C H, Mruk D D, et al. Tgf-beta3 regulates the blood-testis barrier dynamics via the p38 mitogen activated protein
[118]  (map)kinase pathway: an in vivo study. Endocrinology, 2003, 144: 1139—1142
[119]  20 Xia W, Mruk D D, Lee W M, et al. Differential interactions between transforming growth factor-β3/TβR1, TAB1, and CD2AP disrupt
[120]  blood-testis barrier and sertoli-germ cell adhesion. J Biol Chem, 2006, 281: 16799—16813
[121]  21 Wang Y, Lui W Y. Opposite effects of interleukin-1alpha and transforming growth factor-β2 induce stage-specific regulation of junctional
[122]  adhesion molecule-b gene in sertoli cells. Endocrinology, 2009, 150: 2404—2412
[123]  22 Yan H H, Mruk D D, Lee W M, et al. Blood-testis barrier dynamics are regulated by testosterone and cytokines via their differential effects
[124]  on the kinetics of protein endocytosis and recycling in sertoli cells. FASEB J, 2008, 22: 1945—1959
[125]  23 Cai H, Ren Y, Li X X, et al. Scrotal heat stress causes a transient alteration of tight junction-associated molecules and induction of TGF βs
[126]  expression. Int J Androl, 2010, Jul 14. [Epub ahead of print]
[127]  24 Wong C H, Mruk D D, Lui W Y, et al. Regulation of blood-testis barrier dynamics: an in vivo study. J Cell Sci, 2004, 117: 783—798

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133