全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肿瘤:一种蛋白质组病

, PP. 788-794

Keywords: 肿瘤,蛋白质组病,蛋白质表达谱,翻译后修饰蛋白质组,蛋白质相互作用

Full-Text   Cite this paper   Add to My Lib

Abstract:

恶性肿瘤的发生是一个涉及多因素、多基因的多阶段病理过程.以往的研究主要集中在基因组和转录组分析.随着人类基因组计划的完成,肿瘤研究开始进入“后基因组时代”,肿瘤蛋白质组学应运而生.蛋白质作为基因功能的主要执行者,一方面在肿瘤发生发展过程中扮演重要角色,另一方面在很大程度上决定正常细胞和肿瘤细胞之间的差异(如异型性、恶性特征等).本文提出,肿瘤是一种蛋白质组病,并根据肿瘤比较蛋白质组、表达蛋白质组、功能蛋白质组和结构蛋白质组研究进展,从肿瘤发生发展过程中蛋白质(组)表达水平及状态、蛋白质翻译后修饰、蛋白质相互作用及网络调控等三个方面进行阐述.该观点的提出,将为肿瘤发病机制的研究开辟新的领域,为肿瘤的诊断(如生物标志物筛选)和筛选(如药物新靶标)提供新的思路,具有重要的科学意义和临床应用价值.

References

[1]  1 曾益新, 吕有勇, 朱明华, 等. 肿瘤学. 第2 版. 北京: 人民卫生出版社, 2003. 11—30
[2]  2 陈主初, 梁宋平, 肖志强, 等. 肿瘤蛋白质组学. 长沙: 湖南科技出版社, 2002. 1—9
[3]  3 Li F, Li M, Xiao Z, et al. Construction of a nasopharyngeal carcinoma 2D/MS repository with Open Source XML database—— Xindice.
[4]  BMC Bioinformat, 2006, 7: 13
[5]  4 Li F, Xiao Z, Zhang P, et al. A reference map of human nasopharyngeal squamous carcinoma proteome. Int J Oncol, 2007, 30: 1077—1088
[6]  5 Cheng A L, Huang W G, Chen Z C, et al. Identificating cathepsin D as a biomarker for differentiation and prognosis of nasopharyngeal
[7]  carcinoma by laser capture microdissection and proteomic analysis. J Proteome Res, 2008, 7: 2415—2426
[8]  6 Hsieh S Y, Zhuang F H, Wu Y T, et al. Profiling the proteome dynamics during the cell cycle of human hepatoma cells. Proteomics, 2008, 8:
[9]  29 Vasilescu J, Smith J C, Ethier M, et al. Proteomic analysis of ubiquitinated proteins from human MCF-7 breast cancer cells by
[10]  immunoaffinity purification and mass spectrometry. J Proteome Res, 2005, 4: 2192—2200
[11]  2872—2884
[12]  7 Young T W, Mei F C, Yang G, et al. Activation of antioxidant pathways in ras-mediated oncogenic transformation of human surface ovarian
[13]  epithelial cells revealed by functional proteomics and mass spectrometry. Cancer Res, 2004, 64: 4577—4584
[14]  8 Imamura T, Kanai F, Kawakami T, et al. Proteomic analysis of the TGF-beta signaling pathway in pancreatic carcinoma cells using stable
[15]  RNA interference to silence Smad4 expression. Biochem Biophys Res Commun, 2004, 318: 289—296
[16]  9 Qattan A T, Mulvey C, Crawford M, et al. Quantitative organelle proteomics of MCF-7 breast cancer cells reveals multiple subcellular
[17]  locations for proteins in cellular functional processes. J Proteome Res, 2010, 9: 495—508
[18]  10 Leth-Larsen R, Lund R, Hansen H V, et al. Metastasis-related plasma membrane proteins of human breast cancer cells identified by
[19]  comparative quantitative mass spectrometry. Mol Cell Proteomics, 2009, 8: 1436—1449
[20]  11 Leth-Larsen R, Lund R R, Ditzel H J. Plasma membrane proteomics and its application in clinical cancer biomarker discovery. Mol Cell
[21]  Proteomics, 2010, 9: 1369—1382
[22]  12 Xiao Z, Li G, Chen Y, et al. Quantitative proteomic analysis of formalin-fixed and paraffin-embedded nasopharyngeal carcinoma using
[23]  iTRAQ labeling, two-dimensional liquid chromatography, and tandem mass spectrometry. J Histochem Cytochem, 2010, 58: 517—527
[24]  13 Habermann J K, Paulsen U, Roblick U J, et al. Stage-specific alterations of the genome, transcriptome, and proteome during colorectal
[25]  15 Chen J, Kahne T, Rocken C, et al. Proteome analysis of gastric cancer metastasis by two-dimensional gel electrophoresis and matrix assisted
[26]  laser desorption/ionization-mass spectrometry for identification of metastasis-related proteins. J Proteome Res, 2004, 3: 1009—1016
[27]  16 Choong L Y, Lim S, Chong P K, et al. Proteome-wide profiling of the MCF10AT breast cancer progression model. PLoS One, 2010, 5:
[28]  e11030
[29]  17 Li C, Xiao Z, Chen Z, et al. Proteome analysis of human lung squamous carcinoma. Proteomics, 2006, 6: 547—558
[30]  18 Liu Y F, Xiao Z Q, Li M X, et al. Quantitative proteome analysis reveals annexin A3 as a novel biomarker in lung adenocarcinoma. J Pathol,
[31]  2009, 217: 54—64
[32]  19 Zhang Z, Bast R C Jr, Yu Y, et al. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer.
[33]  Cancer Res, 2004, 64: 5882—5890
[34]  20 Mor G, Visintin I, Lai Y, et al. Serum protein markers for early detection of ovarian cancer. Proc Natl Acad Sci USA, 2005, 102: 7677—
[35]  7682
[36]  21 刘金凤, 王京兰, 钱小红, 等. 翻译后修饰蛋白质组学研究的技术策略. 中国生物化学与分子生物学报, 2007, 23: 93—100
[37]  22 Whelan S A, Lu M, He J, et al. Mass spectrometry (LC-MS/MS) site-mapping of N-glycosylated membrane proteins for breast cancer
[38]  biomarkers. J Proteome Res, 2009, 8: 4151—4160
[39]  23 Chaerkady R, Thuluvath P J, Kim M S, et al. 18O labeling for a quantitative proteomic analysis of glycoproteins in hepatocellular carcinoma.
[40]  Clin Proteomics, 2008, 4: 137—155
[41]  24 王念, 康晓楠, 刘银坤, 等. 基于凝集素芯片的不同转移潜能肝癌细胞膜蛋白糖谱比较. 生物化学与生物物理进展, 2009, 36: 1348—
[42]  1355
[43]  25 Li H, Ren Z, Kang X, et al. Identification of tyrosine-phosphorylated proteins associated with metastasis and functional analysis of FER in
[44]  human hepatocellular carcinoma cells. BMC Cancer, 2009, 9: 366
[45]  carcinogenesis. Gene Chromosome Canc, 2007, 46: 10—26
[46]  14 吴晓英, 李萃, 肖志强, 等. 人支气管上皮组织癌变各阶段2-DE 图谱及差异分析. 癌症, 2004, 23: 522—530
[47]  26 Ruan L, Wang G L, Chen Y, et al. Identification of tyrosine phosphoproteins in signaling pathway triggered TGF-a by using functional
[48]  proteomics technology. Med Oncol, 2010, Jan, 5
[49]  27 Akashi T, Nishimura Y, Wakatabe R, et al. Proteomics-based identification of biomarkers for predicting sensitivity to a PI3-kinase inhibitor
[50]  in cancer. Biochem Biophys Res Commun, 2007, 352: 514—521
[51]  28 Akashi T, Yamori T. Proteomic analysis of phosphoproteins sensitive to a phosphatidylinositol 3-kinase inhibitor, ZSTK474, by using
[52]  SELDI-TOF MS. Proteome Sci, 2009, 7: 14
[53]  37 Patwardhan A J, Strittmatter E F, CampⅡ D G, et al. Comparison of normal and breast cancer cell lines using proteome, genome, and
[54]  interactome data. J Proteome Res, 2005, 4: 1952—1960
[55]  30 Meierhofer D, Wang X, Huang L, et al. Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J Proteome Res,
[56]  2008, 7: 4566—4576
[57]  31 Stumpf M P, Thorne T, de Silva E, et al. Estimating the size of the human interactome. Proc Natl Acad Sci USA, 2008, 105: 6959—6964
[58]  32 Jonsson P F, Bates P A. Global topological features of cancer proteins in the human interactome. Bioinformatics, 2006, 22: 2291—2297
[59]  33 Yokoo H, Kondo T, Fujii K, et al. Proteomic signature corresponding to alpha fetoprotein expression in liver cancer cells. Hepatology, 2004,
[60]  40: 609—617
[61]  34 胡巍, 肖志强, 陈主初, 等. 鼻咽癌细胞中p53 相互作用蛋白质的分离和鉴定. 生物化学与生物物理进展, 2004, 31: 628—634
[62]  35 Sun Y, Yi H, Zhang P F, et al. Identification of differential proteins in nasopharyngeal carcinoma cells with p53 silence by proteome
[63]  analysis. FEBS Lett, 2007, 581: 131—139
[64]  36 Tu L C, Yan X, Hood L, et al. Proteomics analysis of the interactome of N-myc downstream regulated gene 1 and its interactions with the
[65]  androgen response program in prostate cancer cells. Mol Cell Proteomics, 2007, 6: 575—588

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133