全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

尿蛋白质组学在疾病标志物研究中的应用

, PP. 795-804

Keywords: 尿液,蛋白质组学,疾病标志物

Full-Text   Cite this paper   Add to My Lib

Abstract:

尿液是重要的疾病标志物来源.本文介绍了当前尿蛋白质组学的研究进展和尿液中疾病标志物研究的主要问题,并对未来的发展进行了展望.由于实际的临床问题通常是对症状相似的多种疾病进行鉴别诊断,仅仅比较某一种疾病组和健康人对照组的尿蛋白质组差异不足以找到具有诊断能力的标志物.另外,尿蛋白质组在个体间和同一个体的不同生理条件下的变化也为疾病标志物的寻找带来了困难.本文提出,进行正常人群个体间和不同生理条件下尿蛋白质变化范围的研究可以为鉴定疾病标志物提供参考标准,从而帮助研究者发现由疾病、而不是生理学差异引起的蛋白的变化.比较蛋白在血浆和尿液中丰度的变化可以揭示肾脏的生理学功能和发现疾病标志物.最后提出,建立一个数据共享平台,收集和整合已有的疾病标志物研发成果,将大大推动尿蛋白质组研究的发展.

References

[1]  1 Pieper R, Gatlin C L, McGrath A M, et al. Characterization of the human urinary proteome: a method for high-resolution display of urinary
[2]  proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics, 2004, 4: 1159—1174
[3]  2 Sun W, Li F, Wu S, et al. Human urine proteome analysis by three separation approaches. Proteomics, 2005, 5: 4994—5001
[4]  3 Adachi J, Kumar C, Zhang Y, et al. The human urinary proteome contains more than 1500 proteins, including a large proportion of
[5]  membrane proteins. Genome Biol, 2006, 7: R80
[6]  4 Li Q R, Fan K X, Li R X, et al. A comprehensive and non-prefractionation on the protein level approach for the human urinary proteome:
[7]  touching phosphorylation in urine. Rapid Commun Mass Spectrom, 24: 823—832
[8]  5 Lafitte D, Dussol B, Andersen S, et al. Optimized preparation of urine samples for two-dimensional electrophoresis and initial application to
[9]  20: 363—379
[10]  8 Khan A, Packer N H. Simple urinary sample preparation for proteomic analysis. J Proteome Res, 2006, 5: 2824—2838
[11]  9 Thongboonkerd V, Chutipongtanate S, Kanlaya R. Systematic evaluation of sample preparation methods for gel-based human urinary
[12]  15 Irmak S, Tilki D, Heukeshoven J, et al. Stage-dependent increase of orosomucoid and zinc-alpha2-glycoprotein in urinary bladder cancer.
[13]  Proteomics, 2005, 5: 4296—4304
[14]  48: 865—871
[15]  17 Tan L B, Chen K T, Yuan Y C, et al. Identification of urine PLK2 as a marker of bladder tumors by proteomic analysis. World J Urol, 28:
[16]  117—122
[17]  18 Tsui K H, Tang P, Lin C Y, et al. Bikunin loss in urine as useful marker for bladder carcinoma. J Urol, 183: 339—344
[18]  19 Mueller J, von Eggeling F, Driesch D, et al. ProteinChip technology reveals distinctive protein expression profiles in the urine of bladder
[19]  cancer patients. Eur Urol, 2005, 47: 885—893
[20]  20 Theodorescu D, Wittke S, Ross M M, et al. Discovery and validation of new protein biomarkers for urothelial cancer: a prospective analysis.
[21]  Lancet Oncol, 2006, 7: 230—240
[22]  21 Goo Y A, Goodlett D R. Advances in proteomic prostate cancer biomarker discovery. J Proteomics, 2010 Apr 14
[23]  [Epub ahead of print]
[24]  patient samples. Clin Biochem, 2002, 35: 581—589
[25]  6 Wang L, Li F, Sun W, et al. Concanavalin A-captured glycoproteins in healthy human urine. Mol Cell Proteomics, 2006, 5: 560—562
[26]  7 Gonzales P A, Pisitkun T, Hoffert J D, et al. Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol, 2009,
[27]  proteomics: quantity, quality, and variability. J Proteome Res, 2006, 5: 183—191
[28]  10 Jürgens M, Appel A, Heine G, et al. Towards characterization of the human urinary peptidome. Comb Chem High Throughput Screen, 2005,
[29]  8: 757—765
[30]  11 Weissinger E M, Wittke S, Kaiser T, et al. Proteomic patterns established with capillary electrophoresis and mass spectrometry for
[31]  diagnostic purposes. Kidney Int, 2004, 65: 2426—2434
[32]  12 Sun W, Chen Y, Li F, et al. Dynamic urinary proteomic analysis reveals stable proteins to be potential biomarkers. Proteomics Clin Appl,
[33]  2009, 3: 370—382
[34]  13 Vrooman O P, Witjes J A. Urinary markers in bladder cancer. Eur Urol, 2008, 53: 909—916
[35]  14 Goodison S, Rosser C J, Urquidi V. Urinary proteomic profiling for diagnostic bladder cancer biomarkers. Expert Rev Proteomics, 2009, 6:
[36]  507—514
[37]  16 Saito M, Kimoto M, Araki T, et al. Proteome analysis of gelatin-bound urinary proteins from patients with bladder cancers. Eur Urol, 2005,
[38]  22 Rehman I, Azzouzi A R, Catto J W, et al. Proteomic analysis of voided urine after prostatic massage from patients with prostate cancer: a
[39]  pilot study. Urology, 2004, 64: 1238—1243
[40]  23 Theodorescu D, Fliser D, Wittke S, et al. Pilot study of capillary electrophoresis coupled to mass spectrometry as a tool to define potential
[41]  prostate cancer biomarkers in urine. Electrophoresis, 2005, 26: 2797—2808
[42]  24 M’Koma A E, Blum D L, Norris J L, et al. Detection of pre-neoplastic and neoplastic prostate disease by MALDI profiling of urine.
[43]  Biochem Biophys Res Commun, 2007, 353: 829—834
[44]  25 Rogers M A, Clarke P, Noble J, et al. Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization
[45]  and neural-network analysis: identification of key issues affecting potential clinical utility. Cancer Res, 2003, 63: 6971—6983
[46]  26 Wu D L, Zhang W H, Wang W J, et al. Proteomic evaluation of urine from renal cell carcinoma using SELDI-TOF-MS and tree analysis
[47]  pattern. Technol Cancer Res Treat, 2008, 7: 155—160
[48]  27 Bosso N, Chinello C, Picozzi S, et al. Human urine biomarkers of renal cell carcinoma evaluated by ClinProt. Proteomics Clin Appl, 2008, 2:
[49]  1036—1046
[50]  28 Ward D G, Nyangoma S, Joy H, et al. Proteomic profiling of urine for the detection of colon cancer. Proteome Sci, 2008, 6: 19
[51]  29 Ye B, Skates S, Mok S C, et al. Proteomic-based discovery and characterization of glycosylated eosinophil-derived neurotoxin and
[52]  COOH-terminal osteopontin fragments for ovarian cancer in urine. Clin Cancer Res, 2006, 12: 432—441
[53]  30 Petri A L, Simonsen A H, Yip T T, et al. Three new potential ovarian cancer biomarkers detected in human urine with equalizer bead
[54]  technology. Acta Obstet Gynecol Scand, 2009, 88: 18—26
[55]  31 Tantipaiboonwong P, Sinchaikul S, Sriyam S, et al. Different techniques for urinary protein analysis of normal and lung cancer patients.
[56]  Proteomics, 2005, 5: 1140—1149
[57]  32 Clarke W, Silverman B C, Zhang Z, et al. Characterization of renal allograft rejection by urinary proteomic analysis. Ann Surg, 2003, 237:
[58]  660—664
[59]  33 Schaub S, Wilkins J, Weiler T, et al. Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass
[60]  spectrometry. Kidney Int, 2004, 65: 323—332
[61]  34 Schaub S, Wilkins J A, Antonovici M, et al. Proteomic-based identification of cleaved urinary beta2-microglobulin as a potential marker for
[62]  acute tubular injury in renal allografts. Am J Transplant, 2005, 5: 729—738
[63]  35 O’Riordan E, Orlova T N, Mei J J, et al. Bioinformatic analysis of the urine proteome of acute allograft rejection. J Am Soc Nephrol, 2004,
[64]  42 Jiang H, Guan G, Zhang R, et al. Identification of urinary soluble E-cadherin as a novel biomarker for diabetic nephropathy. Diabetes Metab
[65]  Res Rev, 2009, 25: 232—241
[66]  43 Rossing K, Mischak H, Dakna M, et al. Urinary proteomics in diabetes and CKD. J Am Soc Nephrol, 2008, 19: 1283—1290
[67]  44 Dihazi H, Muller G A, Lindner S, et al. Characterization of diabetic nephropathy by urinary proteomic analysis: identification of a processed
[68]  ubiquitin form as a differentially excreted protein in diabetic nephropathy patients. Clin Chem, 2007, 53: 1636—1645
[69]  45 Lapolla A, Seraglia R, Molin L, et al. Low molecular weight proteins in urines from healthy subjects as well as diabetic, nephropathic and
[70]  diabetic-nephropathic patients: a MALDI study. J Mass Spectrom, 2009, 44: 419—425
[71]  46 Cutillas P R, Chalkley R J, Hansen K C, et al. The urinary proteome in Fanconi syndrome implies specificity in the reabsorption of proteins
[72]  by renal proximal tubule cells. Am J Physiol Renal Physiol, 2004, 287: F353—364
[73]  47 Drube J, Schiffer E, Mischak H, et al. Urinary proteome pattern in children with renal Fanconi syndrome. Nephrol Dial Transpl, 2009, 24:
[74]  2161—2169
[75]  48 Haubitz M, Wittke S, Weissinger E M, et al. Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy. Kidney
[76]  Int, 2005, 67: 2313—2320
[77]  49 Chalmers M J, Mackay C L, Hendrickson C L, et al. Combined top-down and bottom-up mass spectrometric approach to characterization of
[78]  biomarkers for renal disease. Anal Chem, 2005, 77: 7163—7171
[79]  50 Varghese S A, Powell T B, Budisavljevic M N, et al. Urine biomarkers predict the cause of glomerular disease. J Am Soc Nephrol, 2007, 18:
[80]  913—922
[81]  51 Kaiser T, Kamal H, Rank A, et al. Proteomics applied to the clinical follow-up of patients after allogeneic hematopoietic stem cell
[82]  transplantation. Blood, 2004, 104: 340—349
[83]  52 Weissinger E M, Schiffer E, Hertenstein B, et al. Proteomic patterns predict acute graft-versus-host disease after allogeneic hematopoietic
[84]  stem cell transplantation. Blood, 2007, 109: 5511—5519
[85]  53 Zimmerli L U, Schiffer E, Zurbig P, et al. Urinary proteomic biomarkers in coronary artery disease. Mol Cell Proteomics, 2008, 7: 290—298
[86]  54 Buhimschi I A, Zhao G, Funai E F, et al. Proteomic profiling of urine identifies specific fragments of SERPINA1 and albumin as
[87]  biomarkers of preeclampsia. Am J Obstet Gynecol, 2008, 199: 551—516
[88]  55 Taneja S, Sen S, Gupta V K, et al. Plasma and urine biomarkers in acute viral hepatitis E. Proteome Sci, 2009, 7: 39
[89]  56 Thongboonkerd V, Klein J B, Arthur J M. Proteomic identification of a large complement of rat urinary proteins. Nephron Exp Nephrol,
[90]  failure. Kidney Int, 2006, 70: 496—506
[91]  58 Wang Y, Chen Y, Zhang Y, et al. Differential ConA-enriched urinary proteome in rat experimental glomerular diseases. Biochem Biophys
[92]  Res Commun, 2008, 371: 385—390
[93]  59 Zhou H, Pisitkun T, Aponte A, et al. Exosomal Fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney
[94]  injury. Kidney Int, 2006, 70: 1847—1857
[95]  60 Zurbig P, Decramer S, Dakna M, et al. The human urinary proteome reveals high similarity between kidney aging and chronic kidney
[96]  disease. Proteomics, 2009, 9: 2108—2117
[97]  61 Marshall T, Williams K. Two-dimensional electrophoresis of human urinary proteins following concentration by dye precipitation.
[98]  Electrophoresis, 1996, 17: 1265—1272
[99]  62 Jia L, Zhang L, Shao C, et al. An attempt to understand kidney''s protein handling function by comparing plasma and urine proteomes. PLoS
[100]  One, 2009, 4: e5146
[101]  63 Coon J, Zürbig P, Dakna M, et al. CE-MS analysis of the human urinary proteome for biomarker discovery and disease diagnostics.
[102]  Proteomics Clin Appl, 2008, 2: 964—973
[103]  15: 3240—3248
[104]  36 O’Riordan E, Orlova T N, Podust V N, et al. Characterization of urinary peptide biomarkers of acute rejection in renal allografts. Am J
[105]  Transplant, 2007, 7: 930—940
[106]  37 Quintana L F, Campistol J M, Alcolea M P, et al. Application of label-free quantitative peptidomics for the identification of urinary
[107]  biomarkers of kidney chronic allograft dysfunction. Mol Cell Proteomics, 2009, 8: 1658—1673
[108]  38 Nguyen M T, Ross G F, Dent C L, et al. Early prediction of acute renal injury using urinary proteomics. Am J Nephrol, 2005, 25: 318—326
[109]  39 Ho J, Lucy M, Krokhin O, et al. Mass spectrometry-based proteomic analysis of urine in acute kidney injury following cardiopulmonary
[110]  bypass: a nested case-control study. Am J Kidney Dis, 2009, 53: 584—595
[111]  40 Mischak H, Kaiser T, Walden M, et al. Proteomic analysis for the assessment of diabetic renal damage in humans. Clin Sci (Lond), 2004,
[112]  107: 485—495
[113]  41 Rao P V, Lu X, Standley M, et al. Proteomic identification of urinary biomarkers of diabetic nephropathy. Diabetes Care, 2007, 30: 629—637
[114]  2003, 95: e69—78
[115]  57 Holly M K, Dear J W, Hu X, et al. Biomarker and drug-target discovery using proteomics in a new rat model of sepsis-induced acute renal

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133