全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

外源合成dsRNA介导大豆疫霉PsCdc14基因沉默后对孢子囊发育的影响

, PP. 1177-1184

Keywords: 大豆疫霉,PsCdc14,游动孢子囊,瞬时转化

Full-Text   Cite this paper   Add to My Lib

Abstract:

真核生物中,蛋白磷酸酶Cdc14在细胞有丝分裂过程中发挥着重要的调控作用.已有研究表明,在导致马铃薯晚疫病的致病疫霉病原菌中,Cdc14对游动孢子囊的形成过程起关键性的调控作用.但其在导致大豆根腐病的大豆疫霉病原菌中的作用机制还不清楚.实时定量PCR分析大豆疫霉PsCdc14在不同的生活史和侵染阶段的转录水平发现,PsCdc14在游动孢子囊形成、游动孢子和休止孢3个阶段具有较高的转录水平,但是在菌丝和侵染阶段转录水平很低.由此推测,PsCdc14在疫霉无性繁殖阶段发挥着重要的调控作用,进而影响病害的传播及蔓延.双链RNA(dsRNA)介导的转录后目的基因沉默是真核生物十分保守的一种调控机制.将体外合成dsRNA和聚乙二醇(PEG)介导的大豆疫霉原生质体转化技术相结合,建立了大豆疫霉dsRNA介导的瞬时基因沉默体系,并利用此体系对大豆疫霉中PsCdc14基因进行了功能分析.结果表明,体外合成的PsCdc14dsRNA转入大豆疫霉原生质体后,能够导致内源的基因转录水平显著下降,沉默转化子的游动孢子囊产量显著降低.本研究表明,利用dsRNA介导的瞬时基因沉默能够更加方便、快捷地分析大豆疫霉的基因功能,加深人们对大豆疫霉生长发育和致病机制的理解.

References

[1]  1 Tyler B M. Molecular basis of recognition between Phytophthora pathogens and their hosts. Annu Rev Phytopathol, 2002, 40: 137-167??
[2]  2 Erwin D C, Ribiero O K. Phytophthora Diseases Worldwide. St. Paul, MN: APS Press, 1996
[3]  3 Tyler B M. Phytophthora sojae: root rot pathogen of soybean and model oomycete. Mol Plant Pathol, 2007, 8: 1-8??
[4]  4 Dorrance A E, Mills D, Robertson A E, et al. Phytophthora root and stem rot of soybean. The Plant Health Instructor, 2007
[5]  5 Schmitthenner A F. Problems and progress in control of Phytophthora root rot of soybean. Plant Dis, 1985, 69: 362-368??
[6]  6 Judelson H S, Blanco F A. The spores of Phytophthora: weapons of the plant destroyer. Nat Rev Microbiol, 2005, 3: 47-58??
[7]  7 Ah Fong A M, Judelson H S. Cell cycle regulator Cdc14 is expressed during sporulation but not hyphal growth in the fungus-like oomycetePhytophthora infestans. Mol Microbiol, 2003, 50: 487-494??
[8]  8 Latijnhouwers M, Govers F. A Phytophthora infestans G-protein β subunit is involved in sporangium formation. Eukaryot Cell, 2003, 2:971-977??
[9]  9 Schild D, Byers B. Diploid spore formation and other meiotic effects of two cell-division-cycle mutations of Saccharomyces cerevisiae.Genetics, 1980, 96: 859-876
[10]  10 Taylor G S, Liu Y, Baskerville C, et al. The activity of Cdc14p, an oligomeric dual specificity protein phosphatase from Saccharomycescerevisiae, is required for cell cycle progression. J Biol Chem, 1997, 272: 24054-24063??
[11]  11 Stegmeier F, Amon A. Closing mitosis: the functions of the Cdc14 phosphatase and its regulation. Annu Rev Genet, 2004, 38: 203-232??
[12]  12 Visintin R, Craig K, Hwang E S, et al. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. MolCell, 1998, 2: 709-718
[13]  13 Khmelinskii A, Schiebel E. Assembling the spindle midzone in the right place at the right time. Cell Cycle, 2008, 7: 283-286??
[14]  14 Hall M C, Jeong D E, Henderson J T, et al. Cdc28 and Cdc14 control stability of the anaphase-promoting complex inhibitor Acm1. J BiolChem, 2008, 283: 10396-10407
[15]  15 Marston A L, Lee B H, Amon A. The Cdc14 phosphatase and the FEAR network control meiotic spindle disassembly and chromosomesegregation. Dev Cell, 2003, 4: 711-726??
[16]  16 Buonomo S B, Rabitsch K P, Fuchs J, et al. Division of the nucleolus and its release of CDC14 during anaphase of meiosis I depends onseparase, SPO12, and SLK19. Dev Cell, 2003, 4: 727-739
[17]  17 Jin F, Liu H, Liang F, et al. Temporal control of the dephosphorylation of Cdk substrates by mitotic exit pathways in budding yeast. ProcNatl Acad Sci USA, 2008, 105: 16177-16182??
[18]  18 Bloom J, Cross F R. Novel role for Cdc14 sequestration: Cdc14 dephosphorylates factors that promote DNA replication. Mol Cell Biol,2007, 27: 842-853??
[19]  19 Queralt E, Uhlmann F. Cdk-counteracting phosphatases unlock mitotic exit. Cur Opin Cell Biol, 2008, 20: 661-668??
[20]  20 Wang Y, Shirogane T, Liu D, et al. Exit from exit: resetting the cell cycle through Amn1 inhibition of G protein signaling. Cell, 2003, 112:697-709??
[21]  21 Visintin C, Tomson B N, Rahal R, et al. APC/C-Cdh1-mediated degradation of the Polo kinase Cdc5 promotes the return of Cdc14 into thenucleolus. Genes Dev, 2008, 22: 79-90??
[22]  22 McDonald C M, Cooper K F, Winter E. The Ama1-directed anaphase-promoting complex regulates the smk1 mitogen-activated proteinkinase during meiosis in yeast. Genetics, 2005, 171: 901-911??
[23]  23 Holt L J, Hutti J E, Cantley L C, et al. Evolution of Ime2 phosphorylation sites on Cdk1 substrates provides a mechanism to limit the effectsof the phosphatase Cdc14 in meiosis. Mol Cell, 2007, 25: 689-702??
[24]  24 Patterson K I, Brummer T, O''Brien P M, et al. Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J,2009, 418: 475-489
[25]  25 Trautmann S, McCollum D. Distinct nuclear and cytoplasmic functions of the S. pombe Cdc14-like phosphatase Clp1p/Flp1p and a role fornuclear shuttling in its regulation. Curr Biol, 2005, 15: 1384-1389
[26]  26 Gruneberg U, Glotzer M, Gartner A, et al. The CeCDC-14 phosphatase is required for cytokinesis in the Caenorhabditis elegans embryo. JCell Biol, 2002, 158: 901-914
[27]  27 Mello C C, Conte D Jr. Revealing the world of RNA interference. Nature, 2004, 431: 338-342??
[28]  28 Fire A, Xu S, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998, 391: 806-811??
[29]  29 Avrova A O, Whisson S C, Pritchard L, et al. A novel non-protein-coding infection-specific gene family is clustered throughout the genomeof Phytophthora infestans. Microbiology, 2007, 153: 747-759??
[30]  30 Grenville-Briggs L J, Anderson V L, Fugelstad J, et al. Cellulose synthesis in Phytophthora infestans is required for normal appressoriumformation and successful infection of potato. Plant Cell, 2008, 20: 720-738??
[31]  31 Walker C A, K?ppe M, Grenville-Briggs L J, et al. A putative DEAD-box RNA-helicase is required for normal zoospore development in thelate blight pathogen Phytophthora infestans. Fungal Genet Biol, 2008, 45: 954-962??
[32]  32 Whisson S C, Avrova A O, VAN West P, et al. A method for double-stranded RNA-mediated transient gene silencing in Phytophthorainfestans. Mol Plant Pathol, 2005, 6: 153-163??
[33]  33 Chen X, Shen G, Wang Y, et al. Identification of Phytophthora sojae genes upregulated during the early stage of soybean infection. FEMSMicrobiol Lett, 2007, 269: 280-288??
[34]  34 Mcleod A, Fry B A, Zuluaga A P, et al. Toward improvements of oomycete transformation protocols. J Eukaryot Microbiol, 2008, 55:103-109??
[35]  35 Marchler-Bauer A, Bryant S H. CD-Search: protein domain annotations on the fly. Nucleic Acids Res, 2004, 32: 327-331??
[36]  36 Zhao W, Dong S, Ye W, et al. Genome-wide identification of Phytophthora sojae SNARE genes and functional characterization of theconserved SNARE PsYKT6. Fung Genet Biol, 2011, 48: 241-251??
[37]  37 Hua C, Wang Y, Zheng X, et al. A Phytophthora sojae G-protein α subunit is involved in chemotaxis to soybean isoflavones. Eukaryot Cell,2008, 7: 2133-2140??
[38]  38 Trautmann S, McCollum D. Cell cycle: new functions for Cdc14 family phosphatases. Curr Biol, 2002, 12: R733-R735??
[39]  39 Gray C H, Good VM, Tonks N K, et al. The structure of the cell cycle protein Cdc14 reveals a proline-directed protein phosphatase. EMBOJ, 2003, 22: 3524-3535??
[40]  40 Pereira G, Schiebel E. Separase regulates INCENP-Aurora B anaphase spindle function through Cdc14. Science, 2003, 302: 2120-2124??
[41]  41 Woodbury E L, Morgan D O. Cdk and APC activities limit the spindle-stabilizing function of Fin1 to anaphase. Nat Cell Biol, 2007, 9:106-112??
[42]  42 Higuchi T, Uhlmann F. Stabilization of microtubule dynamics at anaphase onset promotes chromosome segregation. Nature, 2005, 433:171-176??
[43]  43 Khmelinskii A, Lawrence C, Roostalu J, et al. Cdc14-regulated midzone assembly controls anaphase B. J Cell Biol, 2007, 177: 981-993??
[44]  44 D’Amours D, Stegmeier F, Amon A. Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeatedDNA. Cell, 2004, 117: 455-469??
[45]  45 Sullivan M, Higuchi T, Katis V L, et al. Cdc14 phosphatase induces rDNA condensation and resolves cohesin-independent cohesion duringbudding yeast anaphase. Cell, 2004, 117: 471-482??
[46]  46 Machín F, Torres-Rosell J, Jarmuz A, et al. Spindle-independent condensation-mediated segregation of yeast ribosomal DNA in lateanaphase. J Cell Biol, 2005, 168: 209-219??
[47]  47 Ross K E, Cohen-Fix O. A role for the FEAR pathway in nuclear positioning during anaphase. Dev Cell, 2004, 6: 729-735??
[48]  48 Ah-Fong A M, Bormann-Chung C A, Judelson H S. Optimization of transgene-mediated silencing in Phytophthora infestans and itsassociation with small-interfering RNAs. Fung Genet Biol, 2008, 45: 1197-1205??
[49]  49 Dou D, Kale S D, Wang X, et al. Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojaeeffector Avr1b. Plant Cell, 2008, 20: 1118-1133??
[50]  50 Wang Y, Dou D, Wang X, et al. The PsCZF1 gene encoding a C2H2 zinc finger protein is required for growth, development and pathogenesisin Phytophthora sojae. Microb Pathog, 2009, 47: 78-86??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133