全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

任务转换的多脑区作用机制:来自ERP的证据

DOI: 10.1360/052011-490, PP. 1121-1133

Keywords: 任务转换,内源性准备,外源性调节,认知冲突,D-N320,ERPs

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用“任务转换”实验范式,以数字、汉字的归类为任务,探究预知和未预知条件下任务转换的ERPs.实验中被试先后完成2个连续的任务,任务序列为重复(AA,BB,……)或转换(AB,BA,……).结果发现,在预知条件下,转换序列的先行任务数/词比重复序列的先行任务数/词、转换序列的后继任务数/词比重复序列的后继任务数/词都产生一个更为负走向的波,在中央区(CZ)差异波为D-N320.而未预知条件下,仅转换序列后继任务数/词比重复序列后继任务数/词产生一个更为负走向的波,中央区差异波为D-N320.对差异波溯源分析发现,内源性准备源于左侧颞区(LeftBA20);外源性调节在预知条件下源于右侧顶区(RightBA19),而未预知条件下源于左侧额区(LeftBA47)和右侧额区(RightBA10).结果表明,任务转换本质是认知冲突过程,对应的脑电成分为D-N320.在预知条件下任务转换先后单独由颞区和顶区负责,预知准备使得任务转换在低级皮层区完成,而未预知条件下任务转换在更广的高级皮层区完成,同时激活左侧额区和右侧额区,且外源性调节对应的脑区在预知条件和未预知条件下是分离的.

References

[1]  30 Goffaux P, P hillips N A, Sinai M, et al. Behavioural and electrophysiological measures of task switchinging during single and mixed-taskconditions. Biol Psychol, 2006, 72: 278-290??
[2]  31 Karayanidis F, Coltheart M, Michie P T, et al. Electrophysiological correlates of anticipatory and poststimulus components of taskswitching. Psychophysiology, 2003, 40 : 329-348??
[3]  32 Nicholson R, Karayanidis F, Poboka D, et al. Electrophysiological correlates of anticipatory task-switching processes. Psychophysiology,2005, 42: 540-554
[4]  33 Goffaux P, Phillips N A, Sinai M, et al. Neurophysiological measures of task-set switching: effects of working memory and aging. JGerontol Psychol Sci, 2008, 63: 57-66
[5]  34 Lavric A, Mizon G A, Monsell S. Neurophysiological signature of effective anticipatory task-set control: a task-switching investigation. EurJ Neurosci, 2008, 28: 1016-1029??
[6]  35 Hsieh S, Liu H J. Electrophysiological evidence of the adaptive task-set inhibition in task switching. Brain Res, 2009, 1255: 122-131??
[7]  36 Karayanidis F, Jamadar S, Ruge H, et al. Advance preparation in task-switching: converging evidence from behavioral, brain activation, andmodel-based approaches. Front Psychol, 2010, 1: 1-13
[8]  37 Rushworth M F S, Psaaingham R E, Nobre A C. Components of attentional set-switchinging. Exp Psychol, 2005, 52: 83-98??
[9]  38 Werkle Bergner M, Mecklinger A, et al. The control of memory retrieval: insights from event-related potentials. Cogn Brain Res, 2005, 24:599-614??
[10]  39 李月婷, 李琦, 郭春彦. 内隐和外显记忆测验中相关性差异的ERP 研究. 科学通报, 2009, 54: 1902-1911
[11]  40 郭春彦, 陈文君, 田甜, 等. 提取意向对未再认词提取过程的影响. 科学通报, 2010, 55: 1831-1838
[12]  41 Willis M L, Palermo R, Burke D, et al. Switching associations between facial identity and emotional expression: a behavioural and ERPstudy. NeuroImage, 2010, 50: 329-339??
[13]  42 Guo C Y, Duan L, Li W, et al. Distinguishing source memory and item memory: brain potentials at encoding and retrieval. Brain Res, 2006,1118: 142-154??
[14]  43 Guo C Y, Lawson A L, Zhang Q, et al. Brain potentials distinguish new and studied objects during working memory. Hum Brian Mapp,2008, 29: 441-452??
[15]  44 张运红, 郭春彦. 知觉和语义表征关系的ERP 研究. 科学通报, 2008, 53: 3086-3095
[16]  45 Jost Ke, Mayr U, Roler F. Is task switching nothing but cue priming? Evidence from ERPs. Cogn Affect Behav Neurosci, 2008, 8: 74-84??
[17]  46 Gajewski P D, Falkenstein M. Diversity of the P3 in the task-switching paradigm. Brain Res, 2011, 1411: 87-97??
[18]  47 Johnson J R. P300: a model of the variables controlling its amplitude. Ann N Y Acad Sci, 1984, 425: 223-229??
[19]  48 Kramer A, Spinks J A. Capacity views of information processing: central nervous systems measures. In: Jennings J R, Coles M G H, eds. Handbook of Cognitive Psychology: Central and Autonomic Nervous System Approaches. New York: Wiley Press, 1991. 179-249
[20]  49 Polich J, Kok A. Cognitive and biological determinatns of P300: an integrative review. Biol Psychol, 1995, 41: 103-146??
[21]  50 Kok A. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 2001, 38: 557-577??
[22]  51 Barcelo F. The madrid card sorting test (MCST): a task switchinging paradigm to study executive attention with event-related potentials.Brain Res Protoco, 2003, 11: 27-37??
[23]  52 Hans J M. Which brain regions are critically involved in the retrieval of old episodic memory? Brain Res Rev, 1995, 21: 117-127
[24]  53 Sawamura H, Shima K, Tanji J. Numerical representation for action in the parietal cortex of the monkey. Nature, 2002, 415: 918-922??
[25]  54 Friedman D, Nessler D, Johnson R, et al. Age-related changes in executive function: an event-related potential (ERP) investigation oftask-switching. Aging Neuropsychol Cognition, 2008, 15: 95-128
[26]  1 Norman D A, Shallice T. Attention to action: willed and automatic control of behavior. In: Davidson R J, Schwartz G E, Shapiro D, eds.Consciousness and Self Regulation. Advances in Research and Theory. New York: Plenum Press, 1986. 1-18
[27]  2 Baddeley A D, Hitch G. Working Memory. In: Bower G A, ed. The Psychology of Learning and Motivation. New York: Academic Press,1974. 47-89
[28]  3 Allport D A, Styles E A, Hsieh S. Shifting Intentional Set: Exploring the Dynamic Control of Tasks. Attentionand Performance, XV:Conscious and Nonconscious Information Processing. Cambridge, MA: MIT Press, 1994. 421-452
[29]  4 Dark V J. Switching between memory and perception: moving attention or moving memory retrieval. Mem Cogn, 1990, 18: 119-127??
[30]  5 Rogers R D, Monsell S. Costs of a predictable switch between simple cognitive tasks. J Exp Psychol Gener, 1995, 124: 207-231??
[31]  6 Meiran N. Reconfiguration of processing mode prior to task performance. J Exp Psychol Learn Mem Cognition, 1996, 22: 1423-1442??
[32]  7 Rubinstein J S, Meyer D E, Evans J E. Executive control of cognitive processes in task switching. J Exp Psychol Hum Percep Perform, 2001,27: 763-797??
[33]  8 Sohn M, Ursu S, Anderson J R, et al. The role of prefrontal cortex and posterior cortex in task switching. Proc Natl Aacd Sci USA, 2000, 97:13448-13453??
[34]  9 Sdoia S, Ferlazzo F. Stimulus-related inhibition of task set duing task switching. Exp Psychol, 2008, 55: 322-327??
[35]  10 Cooper S, Mari-Beffa P. The role of response repetition in task switching. J Exp Psychol Hum Percep Perform, 2008, 34: 1198-1211??
[36]  11 Beat M, Woodward T S, Alodie Rey-Mermet, et al. The bivalency effect in task switching: general and enduring. Can J Exp Psychol, 2009,63: 201-210??
[37]  12 Karle J W, Watter S, Shedden J M. Task switching in video game players: benefits of selective attention but not resistance to proactiveinterference. Acta Psychol, 2010, 134: 70-78??
[38]  13 Poljac E, Koch I, Bekkering H. Dissociating restart cost and mixing cost in task switching. Psychol Res, 2009, 73: 407-416??
[39]  14 Pantelis C, Fiona Z, Barber, et al. Comparison of set-shifting ability in patients with chronic schizophrenia and frontal lobe damage.Schizophr Res, 1999, 37: 251-270??
[40]  15 Rogers R D, Sahakian B J, Hodges J R, et al. Dissociating executive mechanisms of task control following frontal lobe damage andParkinson’s disease. Brain, 1998, 121: 815-842??
[41]  16 Keele S W, Rafal R. Deficits of task-set in patients with left prefrontal cortex lesions. In: Monsell S, Driver J S, eds. Attention andPerformance XVIII: Control of Cognitive Processes. Cambridge, MA: MIT Press, 2000. 627-651
[42]  17 Ulrich M, Jorn D, Richard I, et al. Dissociating task-set selection from task-set inhibition in the prefrontal cortex. J Cogn Neurosci, 2006, 18:14-21??
[43]  18 Mecklinger A, Cramon D Y, Springer A. Executive control functions in task switching: evidence from brain injured patients. J Clin Exp Neuropsychol, 1999, 21: 606-619??
[44]  19 Rogers R D, Andrews T C, Grasby P M, et al. Contrasting cortical and subcortical activations produced by attentional-set shifting andreversal learning in human. J Cogn Neurosci, 2000, 12: 142-162??
[45]  20 Nagahama Y, Okada T, Katsumi Y, et al. Dissociable mechanisms of attention control within the human prefrontal cortex. Cereb Cortex,2001, 11: 85-92??
[46]  21 Jamadar S, Hughes M, Fulham W R, et al. The spatial and temporal dynamics of anticipatory preparation and response inhibition intask-switching. NeuroImage, 2010, 51: 432-449??
[47]  22 Jamadar S, Michie P, Karayanidis F. Compensatory mechanisms underlie intact task-switching performance in schizophrenia.Neuropsychologia, 2010, 48: 1305-1323??
[48]  23 Lorist M M, Klein M, Nieuwenhuis S, et al. Mental fatigue and task control: planning and preparation. Psychophysiology, 2000, 37: 1-12??
[49]  24 Travers S, West R. Neural correlates of cue retrieval, task set reconfiguration, and rule mapping in the explicit cue task switching paradigm.Psychophysiology, 2008, 45: 588-601??
[50]  25 Karayanidis F, Provost A, Brown S, et al. Switch-specific and general preparation map onto different ERP components in a task-switchingparadigm. Psychophysiology, 2011, 48: 559-568??
[51]  26 Hsieh S, Liu H J. Electrophysiological correlates of task conflicts in task-switching. Brain Res, 2008, 1203: 116-125??
[52]  27 Moulden D J A, Picton T W, Meiran N, et al. Event-related potentials for switchinging between attention task-sets. Brain Cognition, 1998,37: 144-201
[53]  28 Rushworth M F S, Passingham R E, Nobre A C. Components of switchinging intentional set. J Cogn Neurosci, 2002, 14: 1139-1150??
[54]  29 Brass M, Ulsperger M, Knoesche T R, et al. Who comes first? The role of the prefrontal and parietal cortex in cognitive control. J CognNeurosci, 2005, 17: 1367-1375

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133