全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

PG成分持续退化过程中关节软骨组织的超声声速与声衰减

, PP. 1105-1111

Keywords: 关节软骨,胰酶退化,骨关节炎,声学参数

Full-Text   Cite this paper   Add to My Lib

Abstract:

关节软骨的轻微损伤可能导致软骨组织的退化,甚至关节炎(OA)的发生.软骨的早期退化与其蛋白多糖成分(PG)的含量密切相关,对PG成分的有效观测可以评估软骨的退化程度.本文选取了20块正常猪大腿骨关节处软骨样本,其中10块在浓度为0.25%的胰酶中连续退化2h,整个退化过程用10MHz中心频率的常规A型超声系统实时监测,并基于超声回波信号计算了组织的声传播速度(USS)、幅度衰减系数(UAA)和宽带衰减系数(BUA).实验结果显示,常规超声可以用来跟踪软骨组织中PG成分的退化过程,组织学分析证明了超声观测的有效性;经过2h退化,软骨组织的声速减小大约0.4%(P<0.05),但个体差异明显,退化后超声幅度衰减明显减小(从(2.45±0.23)dB/mm减小到(2.28±0.41)dB/mm),超声宽带衰减无显著变化.本研究表明,常规超声可以有效检测软骨组织PG成分的变化,组织声速和幅度衰减系数是描述软骨PG成分退化过程的两个重要指标.本研究可能为关节炎的早期诊断提供参考信息.

References

[1]  1 Mow V C, Ratcliffe A, Poole A R. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials,1992, 13: 67-97??
[2]  2 Mow V C, Gu W Y, Chen F H. Structure and function of articular cartilage and meniscus. In: Mow V C, Huiskes R, eds. Basic OrthopaedicBiomechanics and Mechano-Biology, 3rd ed. Philadelphia: Lippincott Williams & Wilkins, 2005
[3]  3 Wang Q. Ultrasonic characterization of transient and inhomogeneous swelling behavior and progressive degeneration of articular cartilage.Phd Thesis, Hongkong polytechnic university, Hongkong, China, 2007
[4]  4 Mow V C, Guo X E. Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu Rev BiomedEng, 2002, 4: 175-209??
[5]  5 Brandt K, Doherty M, Lohmander S. Osteoarthritis Cartilage. Oxford: Oxford University Press, 1998
[6]  6 Bland Y S, Ashhurst D E. Development and ageing of the articular cartilage of the rabbit knee joint: distribution of the fibrillar collagens.Anat Embryol, 1996, 194: 607-619
[7]  7 Weiss C, Mirow S. An ultrastructural study of osteoarthritic changes in the articular cartilage of human knees. Bone Joint Surg, 1972, 54:954-972
[8]  8 Boven F, Bellemans M A, Geurts J, et al. The value of computed tomography scanning in chondromalacia patellae. Skelet Radiol, 1982, 8:183-185??
[9]  9 Ihara H. Double-contrast CT arthrography of the cartilage of the patellofemoral joint. Clin Orthop, 1985, 198: 50-55
[10]  10 Gagliardi J A, Chung E M, Chandnani V P, et al. Detection and staging of chondromalacia patellae: relative efficacies of conventional MRimaging, MR arthrography, and CT arthrography. Am J Roentgenol, 1994, 163: 629-636
[11]  11 Burstein D, Bashir A, Gray M L. MRI techniques in early stages of cartilage disease. Invest Radiol, 2000, 35: 622-638??
[12]  12 Nieminen M T, Toyras J, Rieppo J, et al. Quantitative MR microscopy of enzymatically degraded articular cartilage. Magn Reson Med,2000, 43: 676-681??
[13]  13 Herrmann J M, Pitris C, Bouma B E, et al. High resolution imaging of normal and osteoarthritic cartilage with optical coherencetomography. J Rheumatol, 1999, 26: 627-635
[14]  14 Legare A, Garon M, Binette F, et al. Evaluation of cartilage quality using streaming potential maps. Transact ICRS, 2000, 3: 89
[15]  15 Disler D G, Raymond E, May D A, et al. Articular cartilage defects: in vitro evaluation of accuracy and interobserver reliability fordetection and grading with US. Radiology, 2000, 215: 846-851
[16]  16 Nieminen H J, Toyras J, Rieppo J, et al. Real-time ultrasound analysis of articular cartilage degradation in vitro. Ultrasound Med Biol, 2002,28: 519-525??
[17]  17 Niu H J, Wang Q, Zheng Y P, et al. A new method for computing the uniaxial modulus of articular cartilages using modifiedinhomogeneous triphasic model. Acta Mech Sin, 2010, 26: 121-126??
[18]  18 Agemura D H, OBrien W D, Olerud J E, et al. Ultrasonic propagation properties of articular cartilage at 100 MHz. J Acoust Soc Am, 1990,87: 1786-1791??
[19]  19 Cherin E, Saied A, Pellaumail B, et al. Assessment of rat articular cartilage maturation using 50-MHz quantitative ultrasonography.Osteoarthr Cartilage, 2001, 9: 178-186??
[20]  20 Myers S L, Dines K, Brandt D A, et al. Experimental assessment by high frequency ultrasound of articular cartilage thickness andosteoarthritic changes. J Rheumatol, 1995, 22: 109-116
[21]  21 Suh J K F, Youn I, Fu F H. An in situ calibration of an ultrasound transducer: a potential application for an ultrasonic indentation test of articular cartilage. J Biomech, 2001, 34: 1347-1353??
[22]  22 Fortin M, Buschmann M D, Bertrand M J, et al. Dynamic measurement of internal solid displacement in articular cartilage using ultrasoundbackscatter. J Biomech, 2003, 36: 443-447??
[23]  23 Hattori K, Ikeuchi K, Morita Y, et al. Quantitative ultrasonic assessment for detecting microscopic cartilage damage in osteoarthritis.Arthritis Res Ther, 2005, 7: 38-46??
[24]  24 Hattori K, Takakura Y, Ishimura M, et al. Differential acoustic properties of early cartilage lesions in living human knee and ankle joints.Arthritis Rheum, 2005, 52: 3125-3131??
[25]  25 Zheng Y P, Shi J, Qin L, et al. Dynamic depth-dependent osmotic swelling and solute diffusion in articular cartilage monitored usingreal-time ultrasound. Ultrasound Med Biol, 2004, 30: 841-849??
[26]  26 Zheng Y P, Niu H J, Mak A F T, et al. Ultrasonic measurement of depth-dependent transient behaviors of articular cartilage undercompression. J Biomech, 2005, 38: 1830-1837??
[27]  27 Joiner G A, Bogoch E R, Pritzker K P, et al. High frequency acoustic parameters of human and bovine articular cartilage followingexperimentally-induced matrix degradation. Ultrasound Imag, 2001, 23: 106-116
[28]  28 Zheng Y P, Mak A F T, Lau K P, et al. An ultrasonic measurement for in vitro depth-dependent equilibrium strains of articular cartilage incompression. Phys Med Biol, 2002, 7: 3165-3180
[29]  29 Laasanen M S, Toyras J, Hirvonen J, et al. Novel mechano-acoustic technique and instrument for diagnosis of cartilage degeneration.Physiol Meas, 2002, 23: 491-503??
[30]  30 Laasanen M S, Saarakkala S, Toyras J, et al. Ultrasound indentation of bovine knee articular cartilage in situ. J Biomech, 2003, 36:1259-1267??
[31]  31 Wang Q, Zheng Y P, Guo X, et al. Progressive trypsin digestion and serum inhibition in articular cartilage monitored using high-frequencyultrasound in situ. In: Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,Vancouver, Canada, 2008, 1: 2169-2172
[32]  32 Zheng Y P, Bridal S L, Shi J, et al. High resolution ultrasound elastomicroscopy imaging of soft tissues: system development and feasibility.Phys Med Biol, 2004, 49: 3925-3938??
[33]  33 Toyras J, Laasanen M S, Saarakkala S, et al. Speed of sound in normal and degenerated bovine articular cartilage. Ultrasound Med Biol,2003, 29: 447-454??
[34]  34 Nieminen H J, Saarakkala S, Laasanen M S, et al. Ultrasound attenuation in normal and spontaneously degenerated articular cartilage.Ultrasound Med Biol, 2004, 30: 493-500??
[35]  35 Wang Q, Zheng Y P, Qin L, et al. Real-time ultrasonic assessment of progressive proteoglycan depletion in articular cartilage. UltrasoundMed Biol, 2008, 34: 1085-1092??
[36]  36 Pellaumail B, Watrin A, Loeuille D, et al. Effect of articular cartilage proteoglycan depletion on high frequency ultrasound backscatter.Osteoarthritis Cartilage, 2002, 10: 535-541??
[37]  37 T?yr?s J, Rieppo J, Nieminen M T, et al. Characterization of enzymatically induced degradation of articular cartilage using high frequencyultrasound. Phys Med Biol, 1999, 44: 2723-2733??
[38]  38 Huang N E, Long S R, Shen Z, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary timeseries analysis. Proc R Soc Lond A, 1998, 454: 903-995??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133