全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

人源microRNA前体的全基因组预测

DOI: 10.1360/052011-614, PP. 958-964

Keywords: miRNA,预测,机器学习,集成学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

microRNA(miRNA)是一类不编码蛋白的调控小分子RNA,在真核生物中发挥着广泛而重要的调控功能.由于miRNA的表达具有时空特异性,因而通过计算方法预测miRNA而后有针对性的实验验证是miRNA发现的一条重要途径.降低假阳性率是miRNA预测方法面临的重要挑战.本研究采用集成学习方法构建预测miRNA前体的分类器SVMbagging,对训练集、测试集和独立测试集的结果表明,本研究的方法性能稳健、假阳性率低,具有很好的泛化能力,尤其是当阈值取0.9时,特异性高达99.90%,敏感性在26%以上,适合于全基因组预测.采用SVMbagging在人全基因组中预测miRNA前体,当取阈值0.9时,得到14933个可能的miRNA前体.通过与高通量小RNA测序数据的比较,发现其中4481个miRNA前体具有完全匹配的小RNA序列,与理论估计的真阳性数值非常接近.最后,对32个可能的miRNA进行实验验证,确定其中2条为真实的miRNA.

References

[1]  17 Nam J W, Shin K R, Han J, et al. Human microRNA prediction through a probabilistic co-learning model of sequence and structure. NucleicAcids Res, 2005, 33: 3570-3581??
[2]  18 Sewer A, Paul N, Landgraf P, et al. Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics, 2005,6: 267??
[3]  19 Jiang P, Wu H, Wang W, et al. MiPred: classification of real and pseudo microRNA precursors using random forest prediction model withcombined features. Nucl Acids Res, 2007, 35: W339-W344
[4]  20 Morin R D, O’Connor M D, Griffith M, et al. Application of massively parallel sequencing to microRNA profiling and discovery in humanembryonic stem cells. Genome Res, 2008, 18: 610-621??
[5]  21 Bar M, Wyman S K, Fritz B R, et al. MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNAlibraries. Stem Cells, 2008, 26: 2496-2505??
[6]  22 Friedl?nder M R, Chen W, Adamidi C, et al. Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol, 2008, 26:407-415??
[7]  23 侯妍妍, 应晓敏, 李伍举. microRNA 计算发现方法的研究进展. 遗传, 2008, 30: 687-696
[8]  24 Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet, 2005, 37:766-770??
[9]  1 Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116: 281-297??
[10]  2 Seila A C, Sharp P A. Small RNAs tell big stories in Whistler. Nat Cell Biol, 2008, 10: 630-633??
[11]  3 Voorhoeve P M, le Sage C, Schrier M, et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ celltumors. Cell, 2006, 124: 1169-1181??
[12]  4 Tavazoie S F, Alarcon C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 2008, 451:147-152??
[13]  5 Yu F, Yao H, Zhu P, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 2007, 131: 1109-1123??
[14]  6 Huang Q, Gumireddy K, Schrier M, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol,2008, 10: 202-210??
[15]  7 Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res, 2011, 39:D152-D157??
[16]  8 Griffiths-Jones S, Saini H K, van Dongen S, et al. miRBase: tools for microRNA genomics. Nucl Acids Res, 2008, 36: D154-D158??
[17]  9 Yousef M, Nebozhyn M, Shatkay H, et al. Combining multi-species genomic data for microRNA identification using a Naive Bayesclassifier. Bioinformatics, 2006, 22: 1325-1334??
[18]  10 Mignone F, Grillo G, Licciulli F, et al. UTRdb and UTRsite: a collection of sequences and regulatory motifs of the untranslated regions ofeukaryotic mRNAs. Nucleic Acids Res, 2005, 33: D141-D146??
[19]  11 Hofacker I L, Fontana W, Stadler P F, et al. Fast folding and comparison of RNA secondary structures. Monatsh Chem, 1994, 125: 167-188??
[20]  12 Benson D A, Karsch-Mizrachi I, Lipman D J, et al. GenBank. Nucleic Acids Res, 2011, 39: D32-D37
[21]  13 Bonnet E, Wuyts J, Rouze P, et al. Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energiesthan random sequences. Bioinformatics, 2004, 20: 2911-2917??
[22]  16 Ng K L S, Mishra S K. De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsicfolding measures. Bioinformatics, 2007, 23: 1321-1330??
[23]  14 Chang C C, Lin C J. LIBSVM: a Library for Support Vector Machine. 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
[24]  15 Xue C, Li F, He T, et al. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vectormachine. BMC Bioinformatics, 2005, 6: 310??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133