全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于RNA-Seq数据识别果蝇剪接位点和可变剪接事件

DOI: 10.1360/052011-586, PP. 1016-1023

Keywords: 剪接位点,可变剪接,黑腹果蝇,RNA-seq

Full-Text   Cite this paper   Add to My Lib

Abstract:

完整基因结构的预测是当前生命科学研究的一个重要基础课题,其中一个关键环节是剪接位点和各种可变剪接事件的精确识别.基于转录组测序(RNA-seq)数据,识别剪接位点和可变剪接事件是近几年随着新一代测序技术发展起来的新技术策略和方法.本工作基于黑腹果蝇睾丸RNA-seq数据,使用TopHat软件成功识别出39718个果蝇剪接位点,其中有10584个新剪接位点.同时,基于剪接位点的不同组合,针对各类型可变剪接特征开发出计算识别算法,成功识别了8477个可变剪接事件(其中新识别的可变剪接事件3922个),包括可变供体位点、可变受体位点、内含子保留和外显子缺失4种类型.RT-PCR实验验证了2个果蝇基因上新识别的可变剪接事件,发现了全新的剪接异构体.进一步表明,RNA-seq数据可有效应用于识别剪接位点和可变剪接事件,为深入揭示剪接机制及可变剪接生物学功能提供新思路和新手段.

References

[1]  2 Grabowski P J, Black D L. Alternative RNA splicing in the nervous system. Prog Neurobiol, 2001, 65: 289-308??
[2]  3 Douglas L, Black. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem, 2003, 72: 291-336??
[3]  4 Wang G S, Cooper T A. Splicing in disease: Disruption of the splicing code and the decoding machinery. Nat Rev Genet, 2007, 8: 749-761??
[4]  5 Cooper T A, Wan L L, Dreyfuss G. RNA and disease. Cell, 2009, 136: 777-793??
[5]  6 Johnson J M, Castle J, Garrett-Engele P, et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junctionmicroarrays. Science, 2003, 302: 2141-2144??
[6]  7 Clark T A, Schweitzer A C, Chen T X, et al. Discovery of tissue-specific exons using comprehensive human exon microarrays. GenomeBiol, 2007, 8: R64
[7]  8 Sonnenburg S, Schweikert G, Philips P, et al. Accurate splice site prediction using support vector machines. BMC Bioinformatics, 2007, 10:S7
[8]  9 Pertea M, Lin X Y, Salzberg S L. GeneSplicer: A new computational method for splice site detection. Nucleic Acids Res, 2001, 29:1185-1190??
[9]  10 Zhang Q W, Peng Q K, Li K K, et al. Splice sites detection by combining markov and hidden markov model. Biomed Eng Inform, 2009, 9:1-5
[10]  11 Reese M G. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster. Comput Chem, 2001, 26:51-56??
[11]  12 Iida K, Fukami-Kobayashi K, Toyoda A, et al. Analysis of multiple occurrences of alternative splicing events in Arabidopsis thaliana usingnovel sequenced full-length cDNAs. DNA Res, 2009, 16: 155-164??
[12]  13 Wang Z, Gerstein M, Snyder M. RNA-Seq: A revolutionary tool for transcriptomics. Nat Rev Genet, 2009, 10: 57-63??
[13]  14 Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods, 2008, 5:621-628??
[14]  15 Sultan M, Schulz M H, Richard H, et al. A global view of gene activity and alternative splicing by deep sequencing of the humantranscriptome. Science, 2008, 321: 956-960??
[15]  16 Pan Q, Shai O, Lee L J, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing.Nat Genet, 2008, 40: 1413-1415??
[16]  17 Ramani A K, Calarco J A, Pan Q, et al. Genome-wide analysis of alternative splicing in Caenorhabditis elegans. Genome Res, 2011, 21:342-348??
[17]  18 Stolc V, Gauhar Z, Mason C, et al. A gene expression map for the euchromatic genome of Drosophila melanogaster. Science, 2004, 306:655-660??
[18]  19 Black D L. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem, 2003, 72: 291-336??
[19]  20 Gan Q, Chepelev I, Wei G, et al. Dynamic regulation of alternative splicing and chromatin structure in Drosophila gonads revealed byRNA-seq. Cell Res, 2010, 20: 763-783??
[20]  21 Graveley B R, Brooks A N, Carlson J W, et al. The developmental transcriptome of Drosophila melanogaster. Nature, 2011, 471: 473-479??
[21]  22 Yun D, Li Z, Shuang Y, et al. A young Drosophila duplicate gene plays essential roles in spermatogenesis by regulating several Y-linkedmale fertility genes. PLoS Genet, 2010, 6: e1001255??
[22]  23 Pepke S, Wold B, Mortazavi A. Computation for ChIP-seq and RNA-seq studies. Nat Methods, 2009, 6: S22-S32??
[23]  24 Trapnell C, Pachter L, Salzberg S L. TopHat: Discovering splice junctions with RNA-seq. Bioinformatics, 2009, 25: 1105-1111??
[24]  25 Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. GenomeBiol, 2009, 10: R25
[25]  26 Dorus S, Freeman Z N, Parker E R, et al. Recent origins of sperm genes in Drosophila. Mol Biol Evol, 2008, 25: 2157-2166??
[26]  27 Ghosh-Roy A, Desai B S, Ray K. Dynein light chain 1 regulates dynamin-mediated F-actin assembly during sperm individualization inDrosophila. Mol Biol Cell, 2005, 16: 3107-3116??
[27]  28 Kondylis V, Tang Y, Fuchs F, et al. Identification of ER proteins involved in the functional organisation of the early secretory pathway inDrosophila cells by a targeted RNAi screen. PLoS One, 2011, 6: e17173??
[28]  1 朱玉贤, 李毅. 现代分子生物学. 第2 版. 北京: 高等教育出版社, 2005. 243-246

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133