全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种结合单张芯片序列捕获和高通量测序技术测序外显子组的方法

, PP. 714-721

Keywords: 外显子组测序,外显子组捕获,高通量测序

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着高通量测序技术的发展,全外显子测序已经成为一种研究人类疾病的重要方法.本文展示了一种通过Nimblegen2.1M芯片进行外显子DNA序列捕获和高通量测序的方法,包括两步法文库制备.测序的平均覆盖深度达33倍时,95.6%的34M目标区域得到均衡覆盖,特异性达到80%.对比全基因组鸟枪法测序的结果,此方法在检测SNP时的假阳性率为0.97%,假阴性率为6.27%.本方法对于全基因组扩增的DNA也适用.结果显示,全外显子测序技术可以在大规模的群体研究和医学研究中起到重要作用.

References

[1]  1 Albert T J, Molla M N, Muzny D M, et al. Direct selection of human genomic loci by microarray hybridization. Nat Methods, 2007, 4: 903–905??
[2]  2 Levy S, Sutton G, Ng P C, et al. The diploid genome sequence of an individual human. PLoS Biol, 2007, 5: e254??
[3]  3 Wang J, Wang W, Li R, et al. The diploid genome sequence of an Asian individual. Nature, 2008, 456: 60–65??
[4]  4 Wheeler D A, Srinivasan M, Egholm M, et al. The complete genome of an individual by massively parallel DNA sequencing. Nature, 2008, 452: 872–876??
[5]  5 Porreca G J, Zhang K, Li J B, et al. Multiplex amplification of large sets of human exons. Nat Methods, 2007, 4: 931–936??
[6]  6 Gnirke A, Melnikov A, Maguire J, et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol, 2009, 27: 182–189??
[7]  7 Hodges E, Xuan Z, Balija V, et al. Genome-wide in situ exon capture for selective resequencing. Nat Genet, 2007, 39: 1522–1527??
[8]  8 Okou D T, Steinberg K M, Middle C, et al. Microarray-based genomic selection for high-throughput resequencing. Nat Methods, 2007, 4: 907–909??
[9]  9 Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25: 1754–1760??
[10]  10 Li R, Yu C, Li Y, et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 2009, 25: 1966–1967??
[11]  11 Li R, Li Y, Fang X, et al. SNP detection for massively parallel whole-genome resequencing. Genome Res, 2009, 19: 1124–1132??
[12]  12 Choi M, Scholl U I, Ji W, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA, 2009, 106: 19096–19101??
[13]  13 McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20: 1297–1303??
[14]  14 Albers C A, Lunter G, Macarthur D G, et al. Dindel: accurate indel calls from short-read data. Genome Res, 2010, 21: 961–973
[15]  15 Frazer K A, Murray S S, Schork N J, et al. Human genetic variation and its contribution to complex traits. Nat Rev Genet, 2009, 10: 241–251
[16]  16 Ng S B, Turner E H, Robertson P D, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature, 2009, 461: 272–276??
[17]  17 Ng S B, Bigham A W, Buckingham K J, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet, 2010, 42: 790–793??
[18]  18 Ng S B, Buckingham K J, Lee C, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet, 2010, 42: 30–35??
[19]  19 Bilguvar K, Ozturk A K, Louvi A, et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature, 2010, 467: 207–210??
[20]  20 Yi X, Liang Y, Huerta-Sanchez E, et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science, 2010, 329: 75–78??
[21]  21 Li Y, Vinckenbosch N, Tian G, et al. Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants. Nat Genet, 2010, 42: 969–972??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133