11 Jablonski S A, Morrow C D. Mutation of the aspartic acid residues of the GDD sequence motif of poliovirus RNA-dependent RNApolymerase results in enzymes with altered metal ion requirements for activity. J Virol, 1995, 69: 1532-1539
[2]
12 Fullerton S W B, Blaschke M, Coutard B, et al. Structural and functional characterization of sapovirus RNA-dependent RNA polymerase. JVirol, 2007, 81: 1858-1871??
[3]
13 Snijder E J, Meulenberg J J M. The molecular biology of arteriviruses. J Gen Virol, 1998, 79: 961-979
[4]
14 Plagemann P G W. Porcine reproductive and respiratory syndrome virus: origin hypothesis. Emerg Infect Dis, 2003, 9: 903-908
[5]
15 Beerens N, Selisko B, Ricagno S, et al. De novo initiation of RNA synthesis by the arterivirus RNA-dependent RNA polymerase. J Virol,2007, 81: 8384-8395??
[6]
16 Sa′nchez A B, De La Torre J C. Genetic and biochemical evidence for an oligomeric structure of the functional L polymerase of theprototypic arenavirus lymphocytic choriomeningitis virus. J Virol, 2005, 79: 7262-7268??
[7]
17 Sleat D E, Banerjee A K. Transcriptional activity and mutational analysis of recombinant vesicular stomatitis virus RNA polymerase. JVirol, 1993, 67: 1334-1339
[8]
18 Biswas S K, Nayak D P. Mutational analysis of the conserved motifs of influenza A virus polymerase basic protein 1. J Virol, 1994, 68:1819-1826
[9]
19 Zamoto-Niikura A, Terasaki K, Ikegami T, et al. Rift valley fever virus L protein forms a biologically active oligomer. J Virol, 2009, 83:12779-12789??
[10]
20 Boonrod K, Chotewutmontri S, Galetzka D, et al. Analysis of tombusvirus revertants to identify essential amino acid residues within RNAdependent RNA polymerase motifs. J Gen Virol, 2005, 86: 823-826??
[11]
21 Wang Y, Xiao M, Chen J, et al. Mutational analysis of the GDD sequence motif of classical swine fever virus RNA-dependent RNApolymerases. Virus Genes, 2007, 34: 63-65??
[12]
22 Vazquez A L, Alonso J M M, Parra F. Mutation analysis of the GDD sequence motif of a calicivirus RNA-dependent RNA polymerase. JVirol, 2000, 74: 3888-3891??
[13]
23 Velthuis A J W, Arnold J J, Cameron C E, et al. The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. NucleicAcids Res, 2010, 38: 203-214??
[14]
24 Ziebuhr J, Snijder E J, Gorbalenya A E. Virus-encoded proteinases and proteolytic processing in the nidovirales. J Gen Virol, 2000, 81:853-879
[15]
25 Music N, Gagnon C A. The role of porcine reproductive and respiratory syndrome (PRRS) virus structural and non-structural proteins invirus pathogenesis. Anim Health Res Rev, 2010, 11: 135-163??
[16]
26 Fang Y, Snijder E J. The PRRSV replicase: exploring the multifunctionality of an intriguing set of nonstructural proteins. Virus Res, 2010,154: 61-76??
[17]
27 van Dinten L C, Rensen S, Gorbalenya A E, et al. Proteolytic processing of the open reading frame 1b-encoded part of arterivirus replicaseis mediated by nsp4 serine protease and is essential for virus replication. J Virol, 1999, 73: 2027-2037
29 Sun Z, Liu C, Tan F, et al. Identification of dispensable nucleotide sequence in 3'' untranslated region of porcine reproductive and respiratory syndrome virus. Virus Res, 2010, 154: 38-47??
[20]
30 Nedialkova D D, Gorbalenya A E, Snijder E J. Arterivirus nsp1 modulates the accumulation of minus-strand templates to control therelative abundance of viral mRNAs. PLoS Pathog, 2010, 6
[21]
31 Pasternak A O, Spaan W J M, Snijder E J. Nidovirus transcription: how to make sense? J Gen Virol, 2006, 87: 1403-1421
[22]
32 Fukushi S, Kojima Si, Takai R, et al. Poly(A)- and primer-independent RNA polymerase of norovirus. J Virol, 2004, 78: 3889-3896??
[23]
33 Zhou L, Zhang J, Wang X, et al. Expression and characterization of RNA-dependent RNA polymerase of dendrolimus punctatus tetravirus.J Biochem Mol Biol, 2006, 39: 571-577??
[24]
34 Friebe P, Harris E. The interplay of RNA elements in the dengue virus 5′ and 3′ ends required for viral RNA replication. J Virol, 2010, 84:6103-6118??
[25]
1 O''Reilly E K, Kao C C. Analysis of RNA-dependent RNA polymerase structure and function as guided by known polymerase structures andcomputer predictions of secondary structure. Virology, 1998, 252: 287-303??
[26]
2 Wang X, Gillam S. Mutations in the GDD motif of rubella virus putative RNA-dependent RNA polymerase affect virus replication.Virology, 2001, 285: 322-331??
[27]
3 van marle G, van Dinten L C, Spaan W J M, et al. Characterization of an equine arteritis virus replicase mutant defective in subgenomicmRNA synthesis. J Virol, 1999, 73: 5274-5281
[28]
4 Gorbalenya A E, Enjuanes L, Ziebuhr J, et al. Nidovirales: evolving the largest RNA virus genome. Virus Res, 2006, 117: 17-37??
[29]
5 Kamer G, Argos P. Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic AcidsRes, 1984, 12: 7269-7282??
[30]
6 Gallei A, Widauer S, Thiel H J, et al. Mutations in the palm region of a plus-strand RNA virus polymerase result in attenuated phenotype. JGen Virol, 2006, 87: 3631-3636??
[31]
7 Sabanadzovic S, Nina A G-S, Gorbalenya A E. Permutation of the active site of putative RNA-dependent RNA polymerase in a newlyidentified species of plant alpha-like virus. Virology, 2009, 394: 1-7??
[32]
8 Okura I, Horiike N, Michitaka K, et al. Effect of mutation in the hepatitis C virus nonstructural 5B region on HCV replication. J Gas, 2004,39: 449-454
[33]
9 Tomar S, Hardy R W, Smith J L, et al. Catalytic core of alphavirus nonstructural protein nsp4 possesses terminal adenylyltransferaseactivity. J Virol, 2006, 80: 9962-9969??
[34]
10 Tao Y, Ye Q. RNA virus replication complexes. PLoS Pathog, 2010, 6
[35]
35 Masaki T, Suzuki R, Saeed M, et al. Production of infectious hepatitis C virus by using RNA polymerase imediated transcription. J Virol,2010, 84: 5824-5835??