全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

超顺磁性三氧化二铁纳米粒子进入吞噬细胞RAW264.7的途径、代谢归宿和生物学效应

, PP. 626-639

Keywords: 氧化铁纳米粒子,造影剂,巨噬细胞,内吞,铁代谢

Full-Text   Cite this paper   Add to My Lib

Abstract:

超顺磁性铁纳米粒子(SPION)已在纳米医学等诸多领域开始应用,其相关研究也受到了广泛关注,但有关磁性纳米粒子进入细胞的方式、代谢归宿及细胞学效应仍不完全清楚.本研究发现,几乎所有的内吞信号通路都参与了SPION进入RAW264.7巨噬细胞的过程.SPION入胞后主要有3种代谢途径:(1)随有丝分裂进入子代细胞;(2)经溶酶体降解释放游离铁离子进入细胞的铁代谢库;(3)可能通过胞吐作用被排至细胞外.SPION入胞后有很好的生物相容性,对细胞活力、活性氧(ROS)生成及线粒体膜电位等无显著影响,但SPION入胞后对胞内的铁代谢有一定影响,能使贮铁蛋白L(ferritin-L)的mRNA和蛋白表达均升高,运铁蛋白1(ferroportin1)在mRNA水平表达升高,但蛋白质水平未见明显变化,且上述两种蛋白质表达的变化不是通过影响铁调节蛋白2(IRP2)实现的.上述发现为深入揭示纳米粒子的入胞机制及磁性纳米粒子在医学上的安全应用提供了实验依据.

References

[1]  32 Kwik J, Boyle S, Fooksman D, et al. Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependentorganization of cell actin. Proc Natl Acad Sci USA, 2003,100: 13964-13969
[2]  33 Qualmann B, Kessels M M, Kelly R B. Molecular links between endocytosis and the actin cytoskeleton. J Cell Biol, 2000, 150: F111-F116??
[3]  34 Raynal I, Prigent P, Peyramaure S, et al. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms andcomparison of ferumoxides and ferumoxtran-10. Invest Radiol, 2004, 39: 56-63??
[4]  35 Harush-Frenkel O, Debotton N, Benita S, et al. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys ResCommun, 2007, 353: 26-32??
[5]  36 Jones A T. Macropinocytosis: searching for an endocytic identity and role in the uptake of cell penetrating peptides. J Cell Mol Med, 2007, 11:670-684??
[6]  37 West M A, Bretscher M S, Watts C. Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells. J CellBiol, 1989, 109: 2731-2739??
[7]  38 Kaksonen M, Toret C P, Drubin D G. Harnessing actin dynamics for clathrin mediated endocytosis. Nat Rev Mol Cell Biol, 2006, 7: 404-414??
[8]  39 Merrifield C J. Seeing is believing: imaging actin dynamics at single sites of endocytosis. Trends Cell Biol, 2004, 14: 352-358??
[9]  40 Wang S W, Yang C S, Chen Y C. The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxidenanoparticles. Biomaterials, 2009, 30: 3645-3651??
[10]  41 Skotland T, Sontum P C, Oulie I. In vitro stability analyses as a model for metabolism of ferromagnetic particles (Clariscan), a contrast agentfor magnetic resonance imaging. J Pharm Biomed Anal, 2002, 28: 323-329??
[11]  42 Arbab A S, Wilson L B, Ashari P, et al. A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO)nanoparticles: implications for cellular magnetic resonance imaging. NMR Biomed, 2005, 18: 383-389??
[12]  43 Jin H, Heller D A, Strano M S. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells.Nano Lett, 2008, 8: 1577-1585??
[13]  44 Pouliquen D, Le Jeune J J, Perdrisot R, et al. Iron oxide nanoparticles for use as an MRI contrast agent: pharmacokinetics and metabolism.Magn Reson Imaging, 1991, 9: 275-283??
[14]  45 Okon E, Pouliquen D, Okon P, et al. Biodegradation of magnetite dextran nanoparticles in the rat. A histologic and biophysical study. LabInvest, 1994, 71: 895-903
[15]  46 Hentze M W, Muckenthaler M U, Andrews N C. Balancing acts: molecular control of mammalian iron metabolism. Cell, 2004, 117: 285-297??
[16]  47 Coulson R M, Cleveland D W. Ferritin synthesis is controlled by iron-dependent translational derepression and by changes insynthesis/transport of nuclear ferritin RNAs. Proc Natl Acad Sci USA, 1993, 90: 7613-7617??
[17]  48 Liu X B, Hill P, Haile D J. Role of the ferroportin iron-responsive element in iron and nitric oxide dependent gene regulation. Blood Cells MolDis, 2002, 29: 315-326??
[18]  49 Aydemir F, Jenkitkasemwong S, Gulec S, et al. Iron loading increases ferroportin heterogeneous nuclear RNA and mRNA levels in murineJ774 macrophages. J Nutr, 2009, 139: 434-438??
[19]  50 Eisenstein R S. Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu Rev Nutr, 2000, 20: 627-662??
[20]  51 Yuan X M, Li W, Baird S K, et al. Secretion of ferritin by iron-laden macrophages and influence of lipoproteins. Free Radic Res, 2004, 38:1133-1142??
[21]  52 Leimberg M J, Prus E, Konijn A M, et al. Macrophages function as a ferritin iron source for cultured human erythroid precursors. J CellBiochem, 2008, 103: 1211-1218
[22]  1 张可华, 郭丽丽, 蔡哲, 等. 硅化超顺磁氧化铁纳米颗粒标记人羊膜间充质细胞的效率及其对细胞增殖的影响. 中国科学: 生命科学, 2010, 40: 1154-1160
[23]  2 Neri M, Maderna C, Cavazzin C, et al. Efficient in vitro labeling of human neural precursor cells with superparamagnetic iron oxide particles:relevance for in vivo cell tracking. Stem Cells, 2008, 26: 505-516??
[24]  3 Veiseh O, Gunn J W, Kievit F M, et al. Inhibition of tumor-cell invasion with chlorotoxin-bound superparamagnetic nanoparticles. Small,2009, 5: 256-264
[25]  4 Johannsen M, Gneveckow U, Thiesen B, et al. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, andthree-dimensional temperature distribution. Eur Urol, 2007, 52: 1653-1661??
[26]  5 Jing X H, Yang L, Duan X J, et al. In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bonemarrow mesenchymal stem cells following intra-articular injection. Joint Bone Spine, 2008, 75: 432-438??
[27]  6 Neuwelt E A, Hamilton B E, Varallyay C G, et al. Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magneticresonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int, 2009, 75: 465-474
[28]  7 Huth S, Lausier J, Gersting S W, et al. Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer. JGene Med, 2004, 6: 923-936
[29]  8 Mayor S, Pagano R E. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol, 2007, 8: 603-612??
[30]  9 Taylor P R, Martinez-Pomares L, Stacey M, et al. Macrophage receptors and immune recognition. Annu Rev Immunol, 2005, 23: 901-944??
[31]  10 Lopez C F, Nielsen S O, Moore P B, et al.Understanding nature''s design for a nanosyringe. Proc Natl Acad Sci USA, 2004, 101: 4431-4434??
[32]  11 Kostarelos K, Lacerda L, Pastorin G, et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type.Nat Nanotechnol, 2007, 2: 108-113??
[33]  12 Davda J, Labhasetwar V. Characterization of nanoparticle uptake by endothelial cells. Int J Pharm, 2002, 233: 51-59??
[34]  13 Kam N W, Liu Z, Dai H. Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism andpathway. Angew Chem Int Ed Engl, 2006, 45: 577-581??
[35]  14 Park J S, Han T H, Lee K Y, et al. N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery ofdrugs: endocytosis, exocytosis and drug release. J Control Release, 2006, 115: 37-45??
[36]  15 Arbab A S, Bashaw L A, Miller B R, et al. Characterization of biophysical and metabolic properties of cells labeled with superparamagneticiron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology, 2003, 229: 838-846??
[37]  16 Pawelczyk E, Arbab A S, Pandit S, et al. Expression of transferrin receptor and ferritin following ferumoxides-prota mine sulfate labeling ofcells: implications for cellular magnetic resonance imaging. NMR Biomed, 2006, 19: 581-592??
[38]  17 Corot C, Robert P, Idée J M, et al. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev, 2006, 58:1471-1504??
[39]  18 Libby P. Inflammation in atherosclerosis. Nature, 2002, 420: 868-874??
[40]  19 Boyle J J. Macrophage activation in atherosclerosis: pathogenesis and pharmacology of plaque rupture. Curr Vasc Pharmacol, 2005, 3: 63-68??
[41]  20 Nardin A, Abastado J P. Macrophages and cancer. Front Biosci, 2008, 13: 3494-3505
[42]  21 Molday R S. Magnetic iron-dextran microspheres. US Patent No. 4452773, 1984
[43]  22 Fauconnier N, Bee A, Roger J, et al. Synthesis of aqueous magnetic liquids by surface complexation of maghemite nanoparticles. J Mol Liq,1999, 83: 233-242??
[44]  23 Goldstein J L, Anderson R G, Brown M S. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature, 1979, 279: 679-685??
[45]  24 Conner S D, Schmid S L.Regulated portals of entry into the cell. Nature 2003; 422: 37-44
[46]  25 Takei K, Haucke V. Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol, 2001, 11: 385-391??
[47]  26 Wang L H, Rothberg K G, Anderson R G. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation.J Cell Biol, 1993, 123: 1107-1117??
[48]  27 Elferink J G. Chlorpromazine inhibits phagocytosis and exocytosis in rabbit polymorphonuclear leukocytes. Biochem Pharmacol, 1979, 28:965-968??
[49]  28 Watanabe S, Hirose M, Miyazaki A, et al. Calmodulin antagonists inhibit the phagocytic activity of cultured Kupffer cells. Lab Invest, 1988,59: 214-218
[50]  29 Lajoie P, Nabi I R. Regulation of raft-dependent endocytosis. J Cell Mol Med, 2007, 11: 644-653??
[51]  30 Kitajima Y, Sekiya T, and Nozawa Y. Freeze-fracture ultrastructural alterations induced by filipin, pimaricin, nystatin and amphotericin B inthe plasmia membranes of Epidermophyton, Saccharomyces and red complex-induced membrane lesions. Biochim Biophys Acta, 1976, 455:452-465??
[52]  31 Kilsdonk E P, Yancey P G, Stoudt G W. Cellular cholesterol efflux mediated by cyclodextrins. J Biol Chem, 1995, 270: 17250-17256??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133