5 Osaka T, Nakanishi T, Shanmugam S, et al. Effect of surface charge of magnetite nanoparticles on their internalization into breast cancerand umbilical vein endothelial cells. Colloid Surface B, 2009, 71: 325-330??
[2]
6 Harush-Frenkel O, Rozentur E, Benita S, et al. Surface charge of nanoparticles determines their endocytic and transcytotic pathway inpolarized MDCK cells. Biomacromolecules, 2008, 9: 435-443??
[3]
7 Chung T H, Wu S H, Yao M, et al. The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in3T3-L1 cells and human mesenchymal stem cells. Biomaterials, 2007, 28: 2959-2966??
[4]
8 Carlson C, Hussain S M, Schrand A M, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactiveoxygen species. J Phys Chem B, 2008, 112: 13608-13619??
[5]
9 Chithrani B D, Ghazani A A, Chan W C W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells.Nano Lett, 2006, 6: 662-668??
[6]
10 Chithrani B D, Chan W C W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of differentsizes and shapes. Nano Lett, 2007, 7: 1542-1550??
[7]
11 Rothen-Rutishauser B M, Schurch S, Haenni B, et al. Interaction of fine particles and nanoparticles with red blood cells visualized withadvanced microscopic techniques. Environ Sci Technol, 2006, 40: 4353-4359??
[8]
12 Foged C, Brodin B, Frokjaer S, et al. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. IntJ Pharm, 2005, 298: 315-322??
[9]
13 Rejman J, Oberle V, Zuhorn I S, et al. Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediatedendocytosis. Biochem J, 2004, 377: 159-169??
[10]
14 Pal S, Tak Y K, Song J M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of thegram-negative bacterium Escherichia coli. Appl Environ Microb, 2007, 73: 1712-1720??
[11]
15 Win K Y, Feng S S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancerdrugs. Biomaterials, 2005, 26: 2713-2722??
[12]
16 Wilhelm C, Billotey C, Roger J, et al. Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating.Biomaterials, 2003, 24: 1001-1011??
[13]
17 Villanueva A, Canete M, Roca A G, et al. The influence of surface functionalization on the enhanced internalization of magneticnanoparticles in cancer cells. Nanotechnology, 2009, 20: 115103(1-9)??
[14]
18 Alivisatos A P. Nanocrystals: building blocks for modern materials design. Endeavour, 1997, 21: 56-60??
[15]
19 Deserno M, Bickel T. Wrapping of a spherical colloid by a fluid membrane. Europhys Lett, 2003, 62: 767-773??
[16]
20 Ginzburg V V, Balijepailli S. Modeling the thermodynamics of the interaction of nanoparticles with cell membranes. Nano Lett, 2007, 7:3716-3722??
[17]
21 Schultz A J, Hall C K, Genzer J. Computer simulation of block copolymer/nanoparticle composites. Macromolecules, 2005, 38: 3007-3016??
[18]
22 Lee J Y, Balazs A C, Thompson R B, et al. Self-assembly of amphiphilic nanoparticle-coil “tadpole” macromolecules. Macromolecules,2004, 37: 3536-3539??
[19]
23 Thompson R B, Ginzburg V V, Matsen M W, et al. Predicting the mesophases of copolymer-nanoparticle composites. Science, 2001, 292:2469-2472??
[20]
24 Drolet F, Fredrickson G H. Combinatorial screening of complex block copolymer assembly with self-consistent field theory. Phys Rev Lett,1999, 83: 4317-4320??
[21]
25 Huh J, Ginzburg V V, Balazs A C. Thermodynamic behavior of particle/diblock copolymer mixtures: simulation and theory. Macromolecules,2000, 33: 8085-8096??
[22]
26 Reister E, Fredrickson G H. Nanoparticles in a diblock copolymer background: The potential of mean force. Macromolecules, 2004, 37:4718-4730??
[23]
27 Roiter Y, Ornatska M, Rammohan A R, et al. Interaction of lipid membrane with nanostructured surfaces. Langmuir, 2009, 25: 6287-6299??
[24]
28 Roiter Y, Ornatska M, Rammohan AR, et al. Interaction of nanoparticles with lipid membrane. Nano Lett, 2008, 8: 941-944??
[25]
29 Saffman P G, Delbruck M. Brownian motion in biological membranes. Proc Natl Acad Sci USA, 1975, 72: 3111-3113??
[26]
30 Park J, Lu W. Interaction of nanoparticles with lipid layers. Phys Rev E, 2009, 80: 1-7
[27]
31 Verma A, Uzun O, Hu Y H, et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater,2008, 7: 588-595??
[28]
32 Jackson A M, Hu Y, Silva P J, et al. From homoligand- to mixed-ligand-monolayer-protected metal nanoparticles: a scanning tunnelingmicroscopy investigation. J Am Chem Soc, 2006, 128: 11135-11149??
[29]
33 Jackson A M, Myerson J W, Stellacci F. Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protectednanoparticles. Nat Mater, 2004, 3: 330-336??
[30]
34 Kucerka N, Kiselev M A, Balgavy P. Determination of bilayer thickness and lipid surface area in unilamellar dimyristoylphosphatidylcholinevesicles from small-angle neutron scattering curves: a comparison of evaluation methods. Eur Biophys J Biophy, 2004, 33: 328-334
[31]
35 Lindvig T, Michelsen M L, Kontogeorgis G M. A flory-huggins model based on the hansen solubility parameters. Fluid Phase Equilibr,2002, 203: 247-260??
[32]
36 Gardon J L. Cohesive-Energy Density. In: Mark H F, Gaylord N G, eds. Encyclopedia of Polymer Science and Technology, Vol. 3. New York:Interscience Publishers, 1965. 833-862
[33]
37 Bauer I W, Li S P, Han Y C, et al. Internalization of hydroxyapatite nanoparticles in liver cancer cells. J Mater Sci Mater M, 2008, 19:1091-1095??
[34]
1 Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. EnvironHealth Persp, 2005, 113: 823-839??
[35]
2 Chen J R, Miao Y Q, He N Y, et al. Nanotechnology and biosensors. Biotechnol Adv, 2004, 22: 505-518??
[36]
3 Lecoanet H F, Wiesner M R. Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ Sci Technol, 2004, 38:4377-4382??
[37]
4 Xia T, Kovochich M, Liong M, et al. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injurypathways. Acs Nano, 2008, 2: 85-96??