全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

纳米粒子表面修饰对其与细胞膜相互作用的影响

DOI: 10.1360/052010-727, PP. 558-564

Keywords: Flory-Huggins自由能,细胞膜,纳米粒子,亲疏水基团,溶度参数

Full-Text   Cite this paper   Add to My Lib

Abstract:

纳米粒子在生物医学上的应用越来越广泛,其进入细胞的机制与规律是设计与开发的基础.已有研究发现,表面修饰不同亲疏水性基团的金纳米粒子,在内吞机制被抑制时,进入细胞的能力明显不同.更特别的是,粒子表面亲水性基团与疏水性基团呈间隔条纹规则排列的纳米粒子,与其他修饰成分相同仅排列不同的纳米粒子进入细胞的规律区别显著.这一特殊现象无法用已有的纳米粒子进入细胞的机制解释.本文针对该研究结果,将纳米粒子与细胞的体系简化,定量分析了3种不同纳米粒子进入细胞前后的不同状态,计算获得了表面修饰不同亲疏水性基团的纳米粒子与细胞膜之间相互作用的Flory-Huggins自由能.结果发现,修饰规则间隔排列亲疏水基团的纳米粒子,其作用自由能在与细胞接触前后变化最大.研究结果不仅解释了实验发现,同时预示了纳米粒子进入细胞的新机制.

References

[1]  5 Osaka T, Nakanishi T, Shanmugam S, et al. Effect of surface charge of magnetite nanoparticles on their internalization into breast cancerand umbilical vein endothelial cells. Colloid Surface B, 2009, 71: 325-330??
[2]  6 Harush-Frenkel O, Rozentur E, Benita S, et al. Surface charge of nanoparticles determines their endocytic and transcytotic pathway inpolarized MDCK cells. Biomacromolecules, 2008, 9: 435-443??
[3]  7 Chung T H, Wu S H, Yao M, et al. The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in3T3-L1 cells and human mesenchymal stem cells. Biomaterials, 2007, 28: 2959-2966??
[4]  8 Carlson C, Hussain S M, Schrand A M, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactiveoxygen species. J Phys Chem B, 2008, 112: 13608-13619??
[5]  9 Chithrani B D, Ghazani A A, Chan W C W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells.Nano Lett, 2006, 6: 662-668??
[6]  10 Chithrani B D, Chan W C W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of differentsizes and shapes. Nano Lett, 2007, 7: 1542-1550??
[7]  11 Rothen-Rutishauser B M, Schurch S, Haenni B, et al. Interaction of fine particles and nanoparticles with red blood cells visualized withadvanced microscopic techniques. Environ Sci Technol, 2006, 40: 4353-4359??
[8]  12 Foged C, Brodin B, Frokjaer S, et al. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. IntJ Pharm, 2005, 298: 315-322??
[9]  13 Rejman J, Oberle V, Zuhorn I S, et al. Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediatedendocytosis. Biochem J, 2004, 377: 159-169??
[10]  14 Pal S, Tak Y K, Song J M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of thegram-negative bacterium Escherichia coli. Appl Environ Microb, 2007, 73: 1712-1720??
[11]  15 Win K Y, Feng S S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancerdrugs. Biomaterials, 2005, 26: 2713-2722??
[12]  16 Wilhelm C, Billotey C, Roger J, et al. Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating.Biomaterials, 2003, 24: 1001-1011??
[13]  17 Villanueva A, Canete M, Roca A G, et al. The influence of surface functionalization on the enhanced internalization of magneticnanoparticles in cancer cells. Nanotechnology, 2009, 20: 115103(1-9)??
[14]  18 Alivisatos A P. Nanocrystals: building blocks for modern materials design. Endeavour, 1997, 21: 56-60??
[15]  19 Deserno M, Bickel T. Wrapping of a spherical colloid by a fluid membrane. Europhys Lett, 2003, 62: 767-773??
[16]  20 Ginzburg V V, Balijepailli S. Modeling the thermodynamics of the interaction of nanoparticles with cell membranes. Nano Lett, 2007, 7:3716-3722??
[17]  21 Schultz A J, Hall C K, Genzer J. Computer simulation of block copolymer/nanoparticle composites. Macromolecules, 2005, 38: 3007-3016??
[18]  22 Lee J Y, Balazs A C, Thompson R B, et al. Self-assembly of amphiphilic nanoparticle-coil “tadpole” macromolecules. Macromolecules,2004, 37: 3536-3539??
[19]  23 Thompson R B, Ginzburg V V, Matsen M W, et al. Predicting the mesophases of copolymer-nanoparticle composites. Science, 2001, 292:2469-2472??
[20]  24 Drolet F, Fredrickson G H. Combinatorial screening of complex block copolymer assembly with self-consistent field theory. Phys Rev Lett,1999, 83: 4317-4320??
[21]  25 Huh J, Ginzburg V V, Balazs A C. Thermodynamic behavior of particle/diblock copolymer mixtures: simulation and theory. Macromolecules,2000, 33: 8085-8096??
[22]  26 Reister E, Fredrickson G H. Nanoparticles in a diblock copolymer background: The potential of mean force. Macromolecules, 2004, 37:4718-4730??
[23]  27 Roiter Y, Ornatska M, Rammohan A R, et al. Interaction of lipid membrane with nanostructured surfaces. Langmuir, 2009, 25: 6287-6299??
[24]  28 Roiter Y, Ornatska M, Rammohan AR, et al. Interaction of nanoparticles with lipid membrane. Nano Lett, 2008, 8: 941-944??
[25]  29 Saffman P G, Delbruck M. Brownian motion in biological membranes. Proc Natl Acad Sci USA, 1975, 72: 3111-3113??
[26]  30 Park J, Lu W. Interaction of nanoparticles with lipid layers. Phys Rev E, 2009, 80: 1-7
[27]  31 Verma A, Uzun O, Hu Y H, et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater,2008, 7: 588-595??
[28]  32 Jackson A M, Hu Y, Silva P J, et al. From homoligand- to mixed-ligand-monolayer-protected metal nanoparticles: a scanning tunnelingmicroscopy investigation. J Am Chem Soc, 2006, 128: 11135-11149??
[29]  33 Jackson A M, Myerson J W, Stellacci F. Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protectednanoparticles. Nat Mater, 2004, 3: 330-336??
[30]  34 Kucerka N, Kiselev M A, Balgavy P. Determination of bilayer thickness and lipid surface area in unilamellar dimyristoylphosphatidylcholinevesicles from small-angle neutron scattering curves: a comparison of evaluation methods. Eur Biophys J Biophy, 2004, 33: 328-334
[31]  35 Lindvig T, Michelsen M L, Kontogeorgis G M. A flory-huggins model based on the hansen solubility parameters. Fluid Phase Equilibr,2002, 203: 247-260??
[32]  36 Gardon J L. Cohesive-Energy Density. In: Mark H F, Gaylord N G, eds. Encyclopedia of Polymer Science and Technology, Vol. 3. New York:Interscience Publishers, 1965. 833-862
[33]  37 Bauer I W, Li S P, Han Y C, et al. Internalization of hydroxyapatite nanoparticles in liver cancer cells. J Mater Sci Mater M, 2008, 19:1091-1095??
[34]  1 Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. EnvironHealth Persp, 2005, 113: 823-839??
[35]  2 Chen J R, Miao Y Q, He N Y, et al. Nanotechnology and biosensors. Biotechnol Adv, 2004, 22: 505-518??
[36]  3 Lecoanet H F, Wiesner M R. Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ Sci Technol, 2004, 38:4377-4382??
[37]  4 Xia T, Kovochich M, Liong M, et al. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injurypathways. Acs Nano, 2008, 2: 85-96??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133