OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
应用BIGIS-4测序系统完成Glaciecolamesophilasp.nov.的全基因组测序和组装
, PP. 544-549
袁丽娜, 任鲁风, 李运涛, 韩伟静, 俞勇, 楚亚男, 刘贵明, 于丹, 滕明静, 王亮, 王绪敏, 周晓光, 俞育德, 于军
Keywords: Glacielolamesophilasp.nov.,BIGIS-4测序系统,海洋环境的适应
Abstract:
BIGIS-4是中国新一代基于焦磷酸测序技术的测序仪.本实验利用BIGIS-4完成了对Glacielolamesophilasp.nov.(Gmn)的全基因组测序.Gmn是一株从海洋无脊椎动物体内分离到的革兰氏阴性菌.BIGIS-4测序得到152043个高质量的测序片段,平均读长406bp.测序片段由BIGIS-4系统后处理模块组装.除单核苷酸同聚体引起的测序错误外,测序结果中没有检测到其他低质量错误.Gmn基因组全长5144318bp,共注释得到4303个基因,其中有大量的代谢基因,与菌种在海洋表面非脊椎动物的生长环境相关.Gmn的冷适应和信号转导相关基因为其对海洋低温环境的适应提供了依据.
References
[1] | 1 Romanenko L A, Zhukova N V, Rohde M, et al. Glaciecola mesophila sp. nov., a novel marine agar-digesting bacterium. Int J Syst Evol
|
[2] | Microbiol, 2003, 53: 647–651
|
[3] | 2 Zhang D C, Yu Y, Chen B, et al. Glaciecola psychrophila sp. nov., a novel psychrophilic bacterium isolated from the Arctic. Int J Syst Evol
|
[4] | Microbiol, 2006, 56: 2867–2869
|
[5] | 3 Van Trappen S, Tan T L, Yang J, et al. Glaciecola polaris sp. nov., a novel budding and prosthecate bacterium from the Arctic Ocean, and
|
[6] | emended description of the genus Glaciecola. Int J Syst Evol Microbiol, 2004, 54: 1765–1771
|
[7] | 4 Baik K S, Park Y D, Seong C N, et al. Glaciecola nitratireducens sp. nov., isolated from seawater. Int J Syst Evol Microbiol, 2006, 56:
|
[8] | 2185–2188
|
[9] | 5 Chen L P, Xu H Y, Fu S Z, et al. Glaciecola lipolytica sp. nov., isolated from seawater near Tianjin city, China. Int J Syst Evol Microbiol,
|
[10] | 2009, 59: 73–76
|
[11] | 6 Matsuyama H, Hirabayashi T, Kasahara H, et al. Glaciecola chathamensis sp. nov., a novel marine polysaccharide-producing bacterium. Int
|
[12] | J Syst Evol Microbiol, 2006, 56: 2883–2886??
|
[13] | 7 Zhang Y J, Zhang X Y, Mi Z H, et al. Glaciecola arctica sp. nov., isolated from Arctic marine sediment. Int J Syst Evol Microbiol, 2010
|
[14] | 8 Yong J J, Park S J, Kim H J, et al. Glaciecola agarilytica sp. nov., an agar-digesting marine bacterium from the East Sea, Korea. Int J Syst
|
[15] | Evol Microbiol, 2007, 57: 951–953??
|
[16] | 9 Prabagaran S R, Manorama R, Delille D, et al. Predominance of Roseobacter, Sulfitobacter, Glaciecola and Psychrobacter in seawater
|
[17] | collected off Ushuaia, Argentina, Sub-Antarctica. FEMS Microbiol Ecol, 2007, 59: 342–355
|
[18] | 10 Guo B, Chen X L, Sun C Y, et al. Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-beta-1,4-xylanase
|
[19] | from marine Glaciecola mesophila KMM 241. Appl Microbiol Biotechnol, 2009, 84: 1107–1115
|
[20] | 11 Ronaghi M, Uhlen M, Nyren P. A sequencing method based on real-time pyrophosphate. Science, 1998, 281: 363–365??
|
[21] | 12 Gordon D. Viewing and editing assembled sequences using Consed. Curr Protoc Bioinformatics, 2003, Chapter 11: Unit11.2
|
[22] | 13 Delcher A L, Bratke K A, Powers E C, et al. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics, 2007, 23:
|
[23] | 673–679
|
[24] | 14 Zdobnov E M, Apweiler R. InterProScan–– an integration platform for the signature-recognition methods in InterPro. Bioinformatics(Oxford,
|
[25] | England), 2001, 17: 847–848
|
[26] | 15 Schattner P, Brooks A N, Lowe T M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs.
|
[27] | Nucleic Acids Res, 2005, 33: W686–W689??
|
[28] | 16 Siguier P, Perochon J, Lestrade L, et al. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res, 2006, 34:
|
[29] | D32–D36
|
[30] | 17 Kurtz S, Phillippy A, Delcher A L, et al. Versatile and open software for comparing large genomes. Genome Biol, 2004, 5: R12
|
[31] | 18 Bott O J, Bergmann J, Hoffmann I, et al. Analysis and specification of telemedical systems using modelling and simulation: the
|
[32] | MOSAIK-M approach. Stud Health Technol Inform, 2005, 116: 503–508
|
[33] | 19 Ivars-Martinez E, Martin-Cuadrado A B, D''Auria G, et al. Comparative genomics of two ecotypes of the marine planktonic copiotroph
|
[34] | Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter. ISME J, 2008, 2:
|
[35] | 1194–1212
|
[36] | 20 Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev, 2005, 29: 3–23??
|
[37] | 21 Tosco A, Birolo L, Madonna S, et al. GroEL from the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC 125: molecular
|
[38] | characterization and gene cloning. Extremophiles, 2003, 7: 17–28
|
[39] | 22 Yamauchi S, Okuyama H, Morita E H, et al. Gene structure and transcriptional regulation specific to the groESL operon from the
|
[40] | psychrophilic bacterium Colwellia maris. Arch Microbiol, 2003, 180: 272–278
|
[41] | 23 Xu K, Ma B G. Comparative analysis of predicted gene expression among deep-sea genomes. Gene, 2007, 397: 136–142??
|
[42] | 24 Lopez-Lopez A, Bartual S G, Stal L, et al. Genetic analysis of housekeeping genes reveals a deep-sea ecotype of Alteromonas macleodii in
|
[43] | the Mediterranean Sea. Environ Microbiol, 2005, 7: 649–659
|
[44] | 25 Gauthier G, Gauthier M, Christen R. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for
|
[45] | small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen.
|
[46] | nov., and proposal of twelve new species combinations. Int J Syst Bacteriol, 1995, 45: 755–761??
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|