全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大鼠非运动脑区控制基于编码的脑-机互联系统

, PP. 513-524

Keywords: 脑-机互联,额脑前叶,大鼠,一维,单神经记录

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着社会对残疾人群需求了解的与日俱增,科研人员开始使用单神经活动性搭建脑-机互联系统(BCI),从而使他们的生活更加便利.目前流行的BCI,使用者操纵其运动脑区或者运动前区代替其真实的肢体运动,产生信号控制电脑程序或者外部设备.然而,这些脑区的损伤妨碍了BCI的应用.本文探讨了基于编码方法并由大鼠额脑前叶(PFC)神经控制一维运动机器的可能性.本实验中,大鼠通过改变PFC神经发放频率操控一维旋转水盘来喝水.适当的发放频率产生控制命令,从而提升喝水时间和喝水次数.结果表明,大鼠可以理解编码BCI系统并且控制一维运动机械来获得回报.

References

[1]  16 Wessberg J, Stambaugh C R, Kralik J D, et al. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature,2000, 408: 361-365??
[2]  17 Carmena J M, Lebedev M A, Crist R E, et al. Learning to control a brain-machine interface for reaching and grasping by primates. PLoSBiol, 2003, 1: 193-208
[3]  18 Serruya M D, Hatsopoulos N G, Paninski L, et al. Instant neural control of a movement signal. Nature, 2002, 416: 141-142??
[4]  19 Fuster J M. The Prefrontal Cortex, 2nd ed. New York: Raven Press, 1989
[5]  20 Salzman C D, Fusi S. Emotion, cognition, and mental state representation in amygdala and prefrontal cortex. Annu Rev Neurosci, 2010, 33:173-202??
[6]  21 Paxinos G, Watson C. The Rat Brain in Stererotaxic coordinates, 4th ed. San Diego: Academic Press, 1999. 96-101
[7]  22 Yoshio S, Susumu T. Dynamic synchrony of firing in the monkey prefrontal cortex during working-memory tasks. J Neurosci, 2006, 26:10141-10153??
[8]  23 In K H, Ki Y Y, Hua L, et al. Indole-3-propionic acid attenuates neuronal damage and oxidative stress in the ischemic hippocampus. JNeurosci Res, 2009, 87: 2126-2137??
[9]  24 Chapin J K, Moxon K A, Markowitz R S, et al. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex.Nat Neurosci, 1999, 2: 664-670??
[10]  25 Teuber H L. Unity and diversity of frontal lobe functions. Acta Neurobiol Exp(Wars), 1972, 32: 615-656
[11]  26 Fuster J M. Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J Neurophysiol,1973, 36: 61-78
[12]  27 Levine S P, Huggins J E, BeMent S L, et al. A direct brain interface based on event-related potentials. IEEE Trans Rehabil Eng, 2000, 8:180-185??
[13]  28 Fuster J M, Bauer R H, Jervey J P. Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks. Exp Neurol,1982, 77: 679-694??
[14]  29 Fuster J M, Jervey J P. Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task. J Neurosci, 1982, 2: 361-375
[15]  30 Kubota K, Iwamoto T, Suzuki H. Visuokinetic activities of primate prefrontal neurons during delayed-response performance. JNeurophysiol, 1974, 37: 1197-1212
[16]  31 Sakai M. Prefrontal unit activity during visually guided lever pressing reaction in the monkey. Brain Res, 1974, 81: 297-309??
[17]  32 Niki H, Watanabe M. Prefrontal unit activity and delayed response: relation to cue location versus direction of response. Brain Res, 1976,105: 79-88??
[18]  33 Boch R A, Goldberg M E. Participation of prefrontal neurons in the preparation of visually guided eye movements in the rhesus monkey. JNeurophysiol, 1989, 61: 1064-1084
[19]  1 Lucas J W, Schiller J S, Benson V. Summary health statistics for U.S. adults: national health interview survey. Vital Health Stat, 2004, 10:60-62
[20]  2 Hochberg L R, Serruya M D, Friehs G M, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 2006,442: 164-171??
[21]  3 Felton E A, Garell P C, Williams J C, et al. Electrocorticographically controlled brain-computer interfaces using motor and sensory imageryin patients with temporary subdural electrode implants. Report of four cases. J Neurosurg, 2007, 106: 495-500??
[22]  4 Fabiani G E, McFarland D J, Pfurtscheller G, et al. Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).IEEE Trans Neural Syst Rehabil Eng, 2005, 12: 331-339
[23]  5 Cincotti F, Mattia D, Aloise F, et al. Non-invasive brain-computer interface system: towards its application as assistive technology. BrainRes Bull, 2008, 75: 796-803??
[24]  6 Bai O, Lin P, Vorbach S, et al. A high performance sensorimotor beta rhythm-based brain-computer interface associated with human naturalmotor behavior. J Neural Eng, 2008, 5: 24-35??
[25]  7 Velliste M, Perel S, Spalding M C, et al. Cortical control of a prosthetic arm for self-feeding. Nature, 2008, 453: 1098-1101??
[26]  8 Moritz C T, Perlmutter S I, Fetz E E. Direct control of paralysed muscles by cortical neurons. Nature, 2008, 456: 639-642??
[27]  9 Kennedy P R, Andreasen D, Ehirim P, et al. Using human extra-cortical local field potentials to control a switch. J Neural Eng, 2004, 1:72-79??
[28]  10 Serruya M D, Hatsopoulos N G, Paninski L, et al. Instant neural control of a movement signal. Nature, 2002, 416: 141-142??
[29]  11 Taylor D M, Tillery S I, Schwartz A B. Direct cortical control of 3d neuroprosthetic devices. Science, 2002, 296: 1829-1832??
[30]  12 Carmena J M, Lebedev M A, Crist R E. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol,2003, 1: e42
[31]  13 Shenoy K V, Meeker D, Cao S, et al. Neural prosthetic control signals from plan activity. Neuroreport, 2003, 14: 591-596??
[32]  14 Musallam S, Corneil B D, Greger B, et al. Cognitive control signals for neural prosthetics. Science, 2004, 305: 258-262??
[33]  15 Olson B P, Si J, Hu J, et al. Closed-loop cortical control of direction using support vector machines. IEEE Trans Neural Syst Rehabil Eng,2005, 13: 72-80??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133