5 Antizar-Ladislao B. Environmental levels, toxicity and human exposure to tributyltin (tbt) -contaminated marine environment: a review.Environ Int, 2008, 34: 292-308??
[2]
6 Crews D, McLachlan J A. Epigenetics, evolution, endocrine disruption, health, and disease. Endocrinology, 2006, 147: S4-S10??
[3]
9 Kruger K, Grabowski P J, Zaug A J, et al. Self-splicing rna: autoexcision and autocyclization of the ribosomal rna intervening sequence oftetrahymena. Cell, 1982, 31: 147-157??
[4]
10 Blackburn E H, Gall J G. Tandemly repeated sequence at termini of extrachromosomal ribosomal-rna genes in tetrahymena. J Mol Biol,1978, 120: 33-53??
[5]
17 Sauvant M P, Pepin D, Piccinni E. Tetrahymena pyriformis: a tool for toxicological studies. Chemosphere, 1999, 38: 1631-1669??
[6]
18 Feng L, Miao W, Wu Y. Differentially expressed genes of tetrahymena thermophila in response to tributyltin (tbt) identified by suppressionsubtractive hybridization and real time quantitative pcr. Aquat Toxicol , 2007, 81: 99-105??
[7]
19 Miao W, Yu T, Orias E, et al. Identification of differentially expressed genes in tetrahymena thermophila in response to dichlorodiphenyltrichloroethane(ddt) by suppression subtractive hybridization. Environ Microbiol, 2006, 8: 1122-1129??
[8]
20 Miao W, Xiong J, Bowen J, et al. Microarray analyses of gene expression during the tetrahymena thermophila life cycle. PLoS One, 2009, 4: e4429??
[9]
21 Xiong J, Yuan D, Fillingham J S, et al. Gene network landscape of the ciliate tetrahymena thermophila. PLoS One, 2011, 6: e20124??
[10]
22 Gorovsky M A, Yao M C, Keevert J B, et al. Isolation of micro- and macronuclei of tetrahymena pyriformis. Methods Cell Biol, 1975, 9:311-327??
[11]
23 Pfaffl M W, Horgan G W, Dempfle L. Relative expression software tool (rest (c)) for group-wise comparison and statistical analysis ofrelative expression results in real-time pcr. Nucleic Acids Res, 2002, 30: e36??
[12]
24 Conesa A, Gotz S, Garcia-Gomez J M, et al. Blast2go: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 2005, 21: 3674-3676??
[13]
25 Bluthgen N, Brand K, Cajavec B, et al. Biological profiling of gene groups utilizing gene ontology. Genome Inform, 2005, 16: 106-115
[14]
36 Gennari A, Viviani B, Galli C L, et al. Organotins induce apoptosis by disturbance of
[15]
[ca2+](i) and mitochondrial activity, causing oxidativestress and activation of caspases in rat thymocytes. Toxicol Appl Pharm, 2000, 169: 185-190??
[16]
37 Raffray M, Cohen G M. Thymocyte apoptosis as a mechanism for tributyltin-induced thymic atrophy in vivo. Arch Toxicol, 1993, 67: 231-236??
[17]
38 Patel T, Gores G J, Kaufmann S H. The role of proteases during apoptosis. Faseb J, 1996, 10: 587-597
[18]
39 Ghibelli L, Maresca V, Coppola S, et al. Protease inhibitors block apoptosis at intermediate stages: a compared analysis of DNAfragmentation and apoptotic nuclear morphology. Febs Lett, 1995, 377: 9-14??
[19]
40 Stohs S J. Oxidative stress-induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (tcdd). Free Radical Bio Med, 1990, 9: 79-90
[20]
41 Blankenship A, Matsumura F. 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced activation of a protein tyrosine kinase, pp60(src), in murinehepatic cytosol using a cell-free system. Mol Pharmacol, 1997, 52: 667-675
[21]
42 Ma Q, Baldwin K T. 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced degradation of aryl hydrocarbon receptor (ahr) by the ubiquitin-proteasomepathway - role of the transcription activaton and DNA binding of ahr. J Biol Chem, 2000, 275: 8432-8438
[22]
52 Pickart C M, Fushman D. Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol, 2004, 8: 610-616??
[23]
7 Santostefano M J, Ross D G, Savas U, et al. Differential time-course and dose-response relationships of tcdd-induced cyp1b1, cyp1a1, andcyp1a2 proteins in rats. Biochem Bioph Res Co, 1997, 233: 20-24
[24]
8 Gibbons I R. Studies on protein components of cilia from tetrahymena pyriformis. Proc Natl Acad Sci USA, 1963, 50: 1002-1010??
[25]
1 Sonnenschein C, Soto A M. An updated review of environmental estrogen and androgen mimics and antagonists. J Steroid Biochem, 1998,65: 143-150??
[26]
2 Marin M G, Moschino V, Cima F, et al. Embryotoxicity of butyltin compounds to the sea urchin paracentrotus lividus. Mar Environ Res,2000, 50: 231-235??
[27]
3 Jha A N, Hagger J A, Hill S J, et al. Genotoxic, cytotoxic and developmental effects of tributyltin oxide (tbto): an integrated approach to theevaluation of the relative sensitivities of two marine species. Mar Environ Res, 2000, 50: 565-573??
[28]
4 Crisp T M, Clegg E D, Cooper R L, et al. Environmental endocrine disruption: an effects assessment and analysis. Environ Health Persp,1998, 106: 11-56
[29]
11 Yao M C, Yao C H. Repeated hexanucleotide c-c-c-c-a-a is present near free ends of macronuclear DNA of tetrahymena. Proc Natl AcadSci USA, 1981, 78: 7436-7439??
[30]
12 Greider C W, Blackburn E H. Identification of a specific telomere terminal transferase-activity in tetrahymena extracts. Cell, 1985, 43:405-413??
[31]
13 Brownell J E, Zhou J X, Ranalli T, et al. Tetrahymena histone acetyltransferase a: a homolog to yeast gcn5p linking histone a cetylation togene activation. Cell, 1996, 84: 843-851??
[32]
14 Mochizuki K, Fine N A, Fujisawa T, et al. Analysis of a piwi-related gene implicates small rnas in genome rearrangement in tetrahymena.Cell, 2002, 110: 689-699??
[33]
15 Fillingham J S, Chilcoat N D, Turkewitz A P, et al. Analysis of expressed sequence tags (ests) in the ciliated protozoan tetr ahymenathermophila. J Eukaryot Microbiol, 2002, 49: 99-107??
[34]
16 Eisen J A, Coyne R S, Wu M, et al. Macronuclear genome sequence of the ciliate tetrahymena thermophila, a model eukaryote. PLoS Biol,2006, 4: 1620-1642
[35]
26 Faith J J, Hayete B, Thaden J T, et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendiumof expression profiles. PLoS Biol, 2007, 5: 54-66??
[36]
27 Prieto C, Risueno A, Fontanillo C, et al. Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles.PLoS One, 2008, 3: e3911??
[37]
28 Cline M S, Smoot M, Cerami E, et al. Integration of biological networks and gene expression data using cytoscape. Nat Protoc, 2007, 2:2366-2382??
[38]
29 Nam D, Kim S Y. Gene-set approach for expression pattern analysis. Brief Bioinform, 2008, 9: 189-197??
[39]
30 Pedra J H F, McIntyre L M, Scharf M E, et al. Genom-wide transcription profile of field- and laboratory-selected dichlorodiphenyltrichloroethane(ddt)-resistant drosophila. Proc Natl Acad Sci USA, 2004, 101: 7034-7039??
[40]
31 Friguet B. Oxidized protein degradation and repair in ageing and oxidative stress. Febs J, 2006, 580: 2910-2916??
[41]
32 Abu-Qare A W, Elmasry E, Abou-Donia M B. A role for p-glycoprotein in environmental toxicology. J Toxicol Env Heal B, 2003, 6:279-288??
[42]
33 Buss D S, McCaffery A R, Callaghan A. Evidence for p-glycoprotein modification of insecticide toxicity in mosquitoes of the culex pipienscomplex. Med Vet Entomol, 2002, 16: 218-222??
[43]
34 Leslie E M, Deeley R G, Cole S P C. Multidrug resistance proteins: role of p-glycoprotein, mrp1, mrp2, and bcrp (abcg2) in tissue defense.Toxicol Appl Pharm, 2005, 204: 216-237
[44]
35 Shabbir A, DiStasio S, Zhao J B, et al. Differential effects of the organochlorine pesticide ddt and its metabolite p,p ′-dde on p-glycoproteinactivity and expression. Toxicol Appl Pharm, 2005, 203: 91-98??
[45]
43 Roberts B J, Whitelaw M L. Degradation of the basic helix-loop-helix/per-arnt-sim homology domain dioxin receptor via the ubiquitin/proteasome pathway. J Biol Chem, 1999, 274: 36351-36356??
[46]
44 McGregor D B, Partensky C, Wilbourn J, et al. An iarc evaluation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofuransas risk factors in human carcinogenesis. Environ Health Persp, 1998, 106: 755-760
[47]
45 Alexeyenko A, Wassenberg D M, Lobenhofer E K, et al. Dynamic zebrafish interactome reveals transcriptional mechanisms of dioxintoxicity. PLoS One, 2010, 5: e10465??
[48]
46 Boverhof D R, Burgoon L D, Tashiro C, et al. Temporal and dose-dependent hepatic gene expression patterns in mice provide new insightsinto tcdd-mediated hepatotoxicity. Toxicol Sci, 2005, 85: 1048-1063??
[49]
47 Carney S A, Chen J, Burns C G, et al. Aryl hydrocarbon receptor activation produces heart -specific transcriptional and toxic responses indeveloping zebrafish. Mol Pharmacol, 2006, 70: 549-561??
[50]
48 Fletcher N, Wahlstrom D, Lundberg R, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin (tcdd) alters the mrna expression of critical genes associatedwith cholesterol metabolism, bile acid biosynthesis, and bile transport in rat liver: a microarray study. Toxicol Appl Pharm, 2005, 207: 1-24
[51]
49 Kiyosawa N, Kwekel J C, Burgoon L D, et al. Species-specific regulation of pxr/car/er-target genes in the mouse and rat liver elicited by o,p′-ddt. BMC Genomics, 2008, 9: 487??
[52]
50 Menzel R, Swain S C, Hoess S, et al. Gene expression profiling to characterize sediment toxicity - a pilot study using caenorhabditis eleganswhole genome microarrays. BMC Genomics, 2009, 10: 160??
[53]
51 Toyoshiba H, Yamanaka T, Sone H, et al. Gene interaction network suggests dioxin induces a significant linkage between aryl hydrocarbonreceptor and retinoic acid receptor beta. Environ Health Persp, 2004, 112: 1217-1224??