全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

抑制表达谷氨酸合酶基因对水稻碳氮代谢的影响

, PP. 481-493

Keywords: 谷氨酸合酶,水稻,共抑制,碳氮代谢

Full-Text   Cite this paper   Add to My Lib

Abstract:

提高水稻的氮素利用率对农业生产极为重要,水稻谷氨酸合酶(GOGAT,EC1.4.1.14)被认为具有提高水稻氮素利用率的潜力,但该酶在水稻中的功能以及其对碳氮代谢的影响一直未被系统的报道.本研究以抑制表达谷氨酸合酶基因的转基因水稻为材料,结合谷氨酸合酶基因家族全生育期表达谱数据,研究该基因家族在水稻体内的功能及其对碳氮代谢的影响.结果表明,谷氨酸合酶家族基因成员的表达模式各不相同,具有明显的组织和器官特异性,表明其在体内行使着不同的功能.与野生型相比,抑制表达谷氨酸合酶基因的转基因植株的分蘖数、地上部干重以及单株产量显著下降.同时,转基因植株叶片中的硝酸盐、部分游离氨基酸、叶绿素、糖、糖磷酸以及吡啶核苷酸含量也显著降低,但游离铵、α-酮戊二酸以及异柠檬酸含量上升.分析表明,谷氨酸合酶在水稻的碳氮代谢过程中扮演着重要角色,是水稻氮素高同化过程中必不可少的因子.

References

[1]  19 Yamaya T, Obara M, Nakajima H, et al. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J Exp Bot,2002, 53: 917-925??
[2]  20 Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of theboundaries of the T-DNA. Plant J, 1994, 6: 271-282??
[3]  21 Yoshida S, Forno D, Cock J. Laboratory manual for physiological studies of rice. Manila, The Phillipines: Gomez International RiceResearch Institute, 1976. 61-65
[4]  22 Sambrook J, Russell D W. Molecular Cloning: A Laboratory Manual. 3rd ed. New York: Cold Spring Harbor Laboratory, 2001. 1.31-1.119
[5]  23 Hecht U, Oelmüller R, Schmidt S, et al. Action of light, nitrate and ammonium on the levels of NADH- and ferredoxin-dependent glutamatesynthases in the cotyledons of mustard seedlings. Planta, 1988, 175: 130-138??
[6]  24 Gibon Y, Blaesing O E, Hannemann J, et al. A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set ofcycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell,2004, 16: 3304-3325??
[7]  25 Migge A, Carrayol E, Kunz C, et al. The expression of the tobacco genes encoding plastidic glutamine synthetase or ferredoxin-dependentglutamate synthase does not depend on the rate of nitrate reduction, and is unaffected by suppression of photorespiration. J Exp Bot, 1997,48: 1175-1181??
[8]  26 Scheible W R, Gonzalez-Fontes A, Lauerer M, et al. Nitrate acts as a signal to induce organic acid metabolism and repress starchmetabolism in tobacco. Plant Cell, 1997, 9: 783-798
[9]  27 Turano F J, Dashner R, Upadhyaya A, et al. Purification of mitochondrial glutamate dehydrogenase from dark-grown soybean seedlings.Plant Physiol, 1996, 112: 1357-1364
[10]  28 Jenner H L, Winning B M, Millar A H, et al. NAD malic enzyme and the control of carbohydrate metabolism in potato tubers. Plant Physiol,2001, 126: 1139-1149??
[11]  29 Borsani J, Budde C O, Porrini L, et al. Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid andsugar level modifications. J Exp Bot, 2009, 60: 1823-1837??
[12]  30 Schneidereit J, H?usler R E, Fiene G, et al. Antisense repression reveals a crucial role of the plastidic 2-oxoglutarate/malate translocatorDiT1 at the interface between carbon and nitrogen metabolism. Plant J, 2006, 45: 206-224??
[13]  35 Wang F, Sanz A, Brenner M L, et al. Sucrose synthase, starch accumulation, and tomato fruit sink strength. Plant Physiol, 1993, 101: 321-327
[14]  36 Geigenberger P, Reimholz R, Geiger M, et al. Regulation of sucrose and starch metabolism in potato tubers in response to short-term waterdeficit. Planta, 1997, 201: 502-518??
[15]  37 Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteinbinding. Anal Biochem, 1976, 72: 248-254??
[16]  38 Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods,2001, 25: 402-408??
[17]  39 Werner T, Holst K, P?rs Y, et al. Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots. JExp Bot, 2008, 59: 2659-2672??
[18]  47 Liu Y J, Nunes-Nesi A, Wallstr?m S V, et al. A redox-mediated modulation of stem bolting in transgenic Nicotiana sylvestris differentiallyexpressing the external mitochondrial NADPH dehydrogenase. Plant Physiol, 2009, 150: 1248-1259??
[19]  48 Popova T N, Pinheiro de, Carvalho M A. Citrate and isocitrate in plant metabolism. Biochim Biophys Acta, 1998, 1364: 307-325??
[20]  49 Nunes-Nesi A, Carrari F, Gibon Y, et al. Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effecton stomatal function. Plant J, 2007, 50: 1093-1106??
[21]  1 Andrews M, Lea P J, Raven J A, et al. Can genetic manipulation of plant nitrogen assimilation enzymes result in increased crop yield andgreater N-use efficiency? An assessment. Ann Appl Biol, 2004, 145: 25-40??
[22]  2 Lam H M, Coschigano K T, Oliveira I C, et al. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu RevPlant Physiol Plant Mol Biol, 1996, 47: 569-593??
[23]  3 Goto S, Akagawa T, Kojima S, et al. Organization and structure of NADH-dependent glutamate synthase gene from rice plants. BiochimBiophys Acta, 1998, 1387: 298-308??
[24]  4 Blanco L, Reddy P M, Silvente S, et al. Molecular cloning, characterization and regulation of two different NADH-glutamate synthasecDNAs in bean nodules. Plant Cell Environ, 2008, 31: 454-472??
[25]  5 Coschigano KT, Melo-Oliveira R, Lim J, et al. Arabidopsis gls mutants and distinct Fd-GOGAT genes: implications for photorespirationand primary nitrogen assimilation, Plant Cell, 1998, 10: 741-752
[26]  6 Lancien M, Martin M, Hsieh M H, et al. Arabidopsis glt1-T mutant defines a role for NADH-GOGAT in the non-photorespiratoryammonium assimilatory pathway. Plant J, 2002, 29: 347-358??
[27]  7 Suzuki A, Vidal J, Gadal P. Glutamate synthase isoforms in rice: immunological studies of enzymes in green leaf, etiolated leaf, and roottissues. Plant Physiol, 1982, 70: 827-832??
[28]  8 Ishiyama K, Hayakawa T, Yamaya T. Expression of NADH-dependent glutamate synthase protein in the epidermis and exodermis of riceroots in response to the supply of ammonium ions. Planta, 1998, 204: 288-294??
[29]  9 Ishiyama K, Kojima S, Takahashi H, et al. Cell type distinct accumulations of mRNA and protein for NADH-dependent glutamate synthasein rice roots in response to the supply of NH4+. Plant Physiol Biochem, 2003, 41: 643-647??
[30]  10 Abiko T, Obara M, Ushioda A, et al. Localization of NAD-isocitrate dehydrogenase and glutamate dehydrogenase in rice roots: candidatesfor providing carbon skeletons to NADH-glutamate synthase. Plant Cell Physiol, 2005, 46: 1724-1734??
[31]  11 Tabuchi M, Abiko T, Yamaya T. Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). J Exp Bot, 2007, 58:2319-2327??
[32]  12 Yamaya T, Hayakawa T, Tanasawa K, et al. Tissue distribution of glutamate synthase and glutamine synthetas e in rice leaves: occurrenceof NADH-dependent glutamate synthase protein and activity in the unexpanded, nongreen leaf blades. Plant Physiol, 1992, 100: 1427-1432??
[33]  13 Hayakawa T, Yamaya T, Mae T, et al. Changes in the content of two glutamate synthase proteins in spikelets of rice (Oryza sativa) plantsduring ripening. Plant Physiol, 1993, 101: 1257-1262
[34]  14 Hayakawa T, Nakamura T, Hattori F, et al. Cellular localization of NADH-dependent glutamate-synthase protein in vascular bundles ofunexpanded leaf blades and young grains of rice plants. Planta, 1994, 193: 455-460
[35]  15 Yamaya T, Tanno H, Hirose N, et al. A supply of nitrogen causes increase in the level of NADH-dependent glutamate synthase protein andin the activity of the enzyme in roots of rice seedlings. Plant Cell Physiol, 1995, 36: 1197-1204
[36]  16 Hayakawa T, Hopkins L, Peat L J, et al. Quantitative intercellular localization of NADH-dependent glutamate synthase protein in differenttypes of root cells in rice plants. Plant Physiol, 1999, 119: 409-416??
[37]  17 Good A G, Shrawat A K, Muench D G. Can less yield more? Is reducing nutrient input into the environment compatible with maintainingcrop production? Trends Plant Sci, 2004, 9: 597-605
[38]  18 Chichkova S, Arellano J, Vance C P, et al. Transgenic tobacco plants that overexpress alfalfa NADH-glutamate synthase have higher carbonand nitrogen content. J Exp Bot, 2001, 52: 2079-2087
[39]  31 Gibon Y, Vigeolas H, Tiessen A, et al. Sensitive and high throughput metabolite assays for inorganic pyrophosphate, ADPGlc, nucleotidephosphates, and glycolytic intermediates based on a novel enzymic cycling system. Plant J, 2002, 30: 221-235??
[40]  32 Novitskaya L, Trevanion S J, Driscoll S, et al. How does photorespiration modulate leaf amino acid contents? A dual approach throughmodelling and metabolite analysis. Plant Cell Environ, 2002, 25: 821-835??
[41]  33 Gibon Y, Larher F. Cycling assay for nicotinamide adenine dinucleotides: NaCl precipitation and ethanol solubilization of the reducedtetrazolium. Anal Biochem, 1997, 251: 153-157??
[42]  34 Dutilleul C, Lelarge C, Prioul J L, et al. Mitochondria-driven changes in leaf NAD status exert a crucial influence on the control of nitrateassimilation and the integration of carbon and nitrogen metabolism. Plant Physiol, 2005, 139: 64-78??
[43]  40 Kunz C, Sch?b H, Leubner-Metzger G, et al. β-1,3-Glucanase and chitinase transgenes in hybrids show distinctive and independent patternsof posttranscriptional gene silencing. Planta, 2001, 212: 243-249
[44]  41 Oliveira I C, Brears T, Knight T J, et al. Overexpression of cytosolic glutamine synthetase. relation to nitrogen, light, and photorespiration.Plant Physiol, 2002, 129: 1170-1180??
[45]  42 Palauqui J C, Vaucheret H. Transgenes are dispensable for the RNA degradation step of cosuppression. Proc Natl Acad Sci USA, 1998, 95:9675-9680??
[46]  43 Schoenbeck M A, Temple S J, Trepp G B, et al. Decreased NADH glutamate synthase activity in nodules and flowers of alfalfa (Medicagosativa L.) transformed with an antisense glutamate synthase transgene. J Exp Bot, 2000, 51: 29-39??
[47]  44 Gálvez S, Roche O, Bismuth E, et al. Mitochondrial localization of a NADP-dependent isocitrate dehydrogenase isoenzyme by using thegreen fluorescent protein as a marker. Proc Natl Acad Sci USA, 1998, 95: 7813-7818??
[48]  45 Weber A, Flügge U I. Interaction of cytosolic and plastidic nitrogen metabolism in plants. J Exp Bot, 2002, 53: 865-874??
[49]  46 Noctor G, Queval G, Gakière B. NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stressconditions. J Exp Bot, 2006, 57: 1603-1620??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133