全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

1973~2009年中国玉米品种演替过程中根系性状及其对氮的响应的变化

, PP. 472-480

Keywords: 根系,根冠比,,相对生长速率,玉米育种

Full-Text   Cite this paper   Add to My Lib

Abstract:

根系在氮素高效吸收过程中起重要作用,但人们对玉米育种过程中不同年代杂交种的根系生长特性及其对氮素供应的响应了解较少.选用中国1973~2009年育成的11个代表性玉米品种,在水培体系下研究了正常供氮(4mmol/L)和低氮(0.04mmol/L)下根系与地上部生长差异.结果表明,与低氮处理相比,正常供氮降低根干重、根冠比和根系相对生长速率,但增加总根长和侧根长.对于20世纪90年代之前育成品种,供氮还降低总轴根长.氮处理不影响种子根数.随育种年代演进,地上部相对生长速率表现明显增加,不同氮水平下表现一致.但是,根系相对生长速率仅在正常供氮条件下表现出与育成年代线性相关.相应地,只在正常供氮条件下玉米总根长、侧根长、轴根长表现为随育成年代增加而明显增加.因此,在过去36年的玉米育种进程中,玉米地上部生长势在不同氮供应水平下均得到提高,而根系生长则只在正常供氮条件下得到提高.进一步改良根系在低氮环境下的生长能力可能提高现代玉米品种的氮吸收效率.

References

[1]  9 Raun W R, Johnson G V. Improving nitrogen use efficiency for cereal production. Agron J, 1999, 91: 357-363??
[2]  1 Tollenaar M. Genetic improvement in grain yield of commercial maize hybrid grown in Ontario from 1959 to 1988. Crop Sci, 1989, 29:1365-1371??
[3]  2 Tollenaar M, Lee E A. Dissection of physiological processes underlying grain yield in maize by examining genetic improvement andheterosis. Maydica, 2006, 51: 399-408
[4]  3 Russell W A. Genetic improvement of maize yields. Adv Agron, 1991, 46: 245-298??
[5]  4 Duvick D N. Genetic contributions to advances in yield of U.S. maize. Maydica, 1992, 37: 69-79
[6]  5 Qiao C G, Wang Y J, Guo H A, et al. A review of advances in maize production in Jilin Province during 1974~1993. Field Crops Res, 1996,47: 65-75??
[7]  6 Khush G S. Green revolution: preparing for the 21st century. Genome, 1999, 42: 646-655??
[8]  7 Duvick D N, Cassman K G. Post-green revolution trends in yield potential of temperate maize in the North-Central United States. Crop Sci,1999, 39: 1622-1630??
[9]  8 谢振江, 李明顺, 徐家舜, 等. 遗传改良对中国华北不同年代玉米单交种产量的贡献. 中国农业科学, 2009, 42: 781-789
[10]  10 Mackay A D, Barber S A. Effect of nitrogen on root growth of two corn genotypes in the field. Agron J, 1986, 77: 699-703
[11]  11 Pan W L, Jackson W A, Moll R H. Nitrate uptake and partitioning by corn (Zea mays L.) root systems and associated morphologicaldifferences among genotypes and stages of root development. J Exp Bot, 1985, 36: 1341-1351??
[12]  12 Wang Y, Mi G H, Chen F J, et al. Response of root morphology to nitrate supply and its contribution to nitrogen accumulation in maize. JPlant Nutri, 2004, 27: 2189-2202??
[13]  13 Hochholdinger F, Tuberosa R. Genetic and genomic dissection of maize root development and architecture. Curr Opin Plant Biol, 2009, 12:172-177??
[14]  14 Liu J C, Li J S, Chen F, et al. Mapping QTLs for root traits under different nitrate levels at the seedling stage in maize (Zea mays L.). PlantSoil, 2008, 305: 253-265
[15]  16 Liu J C, Cai H G, Chu Q, et al. Genetic analysis of vertical root pulling resistance (VRPR) in maize using two genetic populations. MolBreeding, 2010, doi: 10.1007/s11032-010-9496-z
[16]  17 Herder G D, Gert V I, Tom B, et al. The roots of a new green revolution. Trends Plant Sci, 2010, 15: 600-607??
[17]  18 Garnett T, Vanessa C, Brent N K. Root based approaches to improving nitrogen use efficiency in plants. Plant Cell Environ, 2009, 32:1272-1283??
[18]  19 Siddique K H M, Belford R K, Tennant D. Root: shoot ratios of old and modern, tall and semi-dwarf wheats in a mediterranean environment.Plant Soil, 1990, 121: 89-98??
[19]  20 Waines G J, Bahman E. Domestication and crop physiology: roots of green-revolution wheat. Ann Bot, 2007, 100: 991-998??
[20]  21 Wilson H K. Plant characters as indices in relation to the ability of corn strains to withstand lodging. J Am Soc Agron, 1930, 22: 453-458
[21]  22 Jenison J R, Shank D B, Penny L H. Root characteristics of 44 maize inbreds evaluated in four environments. Crop Sci, 1981, 21: 233-237??
[22]  23 Landi P, Albrecht B, Giuliani M M, et al. Seedling characteristics in hydroponic culture and field performance of maize genotypes withdifferent resistance to root lodging. Maydica, 1998, 43: 111-116
[23]  24 Clarke J M, McCaig T N. Breeding for efficient root systems. In: Hayward M D, Osemark M O, Ramagosa I, eds. Plant Breeding. Principlesand Prospects. London: Chapmann Hall, 1993. 485-499
[24]  25 Hammer G L. Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. Corn Belt?. Crop Sci,2009, 49: 299-312??
[25]  26 Hirel B, Le G J, Ney B, et al. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for geneticvariability and quantitative genetics within integrated approaches. J Exp Bot, 2007, 58: 2369-2387??
[26]  27 刘建超, 李建生, 米国华, 等. 不同氮水平下玉米苗期生长性状及成熟期产量的QTL 定位. 中国农业科学, 2009, 42: 3413-3420
[27]  28 蔡红光. 玉米根系及氮磷效率相关数量性状位点(QTL)分析. 中国农业大学博士学位论文. 北京: 中国农业大学, 2010
[28]  29 Feil B. Breeding progress in small grain cereals-a comparison of old and modern cultivars. Plant Breeding, 1992, 108: 1-11??
[29]  30 佟屏亚. 20 世纪中国玉米品种改良的历程和成就. 中国科技史料, 2001, 22: 113-127
[30]  31 张景莲. 1982 年以来我国玉米品种的演变. 河南农业科学, 2008, 6: 36-39
[31]  32 Wolt J P, Song C M. Dynamic-stiffness matrix of unbounded soil by finite-element multi-cell cloning. Earthquake Eng Struc Dyn, 1994, 23:233-250??
[32]  33 Sanderson J B, Daynard T B, Tollenaar M. A mathematical model of the shape of corn leaves. Can J Plant Sci, 1981, 61: 1009-1011??
[33]  34 Botella M, Martinez V, Nieves M, et al. Effect of salinity on the growth and nitrogen uptake by wheat seedlings. J Plant Nutri, 1997, 20:793-804??
[34]  35 Bingham I J. Soil-root-canopy interactions. Ann Appl Biol, 2001, 138: 243-251??
[35]  36 Tian Q Y, Chen F J, Zhang F S, et al. Possible involvement of cytokinin in nitrate-mediated root growth in maize. Plant Soil, 2005, 277:185-196??
[36]  37 Tian Q Y, Chen F J, Liu J X, et al. Inhibition of maize root growth by high nitrate supply is correlated to reduced IAA levels in roots. J PlantPhysiol, 2008, 165: 942-951
[37]  38 Wiesler F, Horst W J. Differences among maize cultivars in the utilization of soil nitrate and the related losses of nitrate through leaching.Plant Soil, 1993, 151: 193-203??
[38]  39 Wiesler F, Horst W J. Root growth and nitrate utilization of maize cultivars under field conditions. Plant Soil, 1994, 163: 267-277??
[39]  40 米国华, 陈范骏, 吴秋平, 等. 玉米高效吸收氮素的理想根构型. 中国科学: 生命科学, 2010, 40: 1112-1116
[40]  41 Campos H M, Cooper J E, Habben G O, et al. Improving drought tolerance in maize: a view from industry. Field Crops Res, 2004, 90:19-34??
[41]  42 李少昆, 王崇桃. 中国玉米生产技术的演变与发展. 中国农业科学, 2009, 42: 1941-1951
[42]  43 Duvick D N. The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron, 2005, 86: 83-145??
[43]  44 孙庆泉, 胡昌浩, 董树亭, 等. 我国不同年代玉米品种生育全程根系特性演化的研究. 作物学报, 2003, 29: 641-645
[44]  45 陈传永, 侯海鹏, 李强, 等. 种植密度对不同玉米品种叶片光合特性与碳、氮变化的影响. 作物学报, 2010, 36: 871-878
[45]  46 何代元, 周联东, 刘经纬, 等. 浅谈美国玉米种质在我国玉米育种中的作用. 2009, 4: 5-6
[46]  47 杨今胜, 王永军, 张吉旺, 等. 三个超高产夏玉米品种的物质生产及光和特性. 作物学报, 2010, 37: 355-361
[47]  48 张卫星, 赵致, 柏光晓, 等. 不同玉米杂交种对水分和氮胁迫的响应及其抗逆性. 中国农业科学, 2007, 40: 1361-1370
[48]  49 Peter R T, Eschholz W, Stamp P, et al. Swiss maize landraces-early vigour adaptation to cool conditions. Acta Agronomica Hungarica,2006, 54: 329-336??
[49]  50 Reinke R F, Richards R A, Angus J F, et al. Early vigor: an important foundation for rapid biomass accumulation. Conference: InternationalRice Research Institute Los Ba?os, Laguna, Philippines, 2002, 429-438??
[50]  51 Fakorede M A B, Ojo D K. Variability for seedling vigour in maize. Exp Agric, 1981, 17: 195-201??
[51]  15 Coque M, Martin A, Veyrieras J B, et al. Genetic variation for N-remobilization and postsilking N-uptake in a set of maize recombinantinbred lines.3. QTL detection and coincidences. Theor Appl Genet, 2008, 117: 729-747
[52]  52 Cirilo A G, Dardanelli J, Balzarini M, et al. Morpho-physiological traits associated with maize crop adaptations to environments differing innitrogen availability. Field Crops Res, 2009, 113: 116-124??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133