全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

在阿尔茨海默病转基因线虫模型中离子以浓度依赖的方式影响贝塔淀粉多肽的毒性

, PP. 369-376

Keywords: 阿尔茨海默病,贝塔淀粉样多肽(1-42),,秀丽隐杆线虫,氧化应激

Full-Text   Cite this paper   Add to My Lib

Abstract:

贝塔淀粉样多肽和铜在阿尔茨海默病的病理发生中发挥了重要作用.从分子水平和行为水平相结合来研究贝塔淀粉样多肽和铜的毒性作用的报道较少见.本研究运用一种阿尔茨海默病的动物模型-贝塔淀粉样多肽转基因线虫(CL2006)来研究贝塔淀粉样多肽和铜的相互作用及其毒性.结果表明,线虫CL2006暴露于10-3mol/L铜离子的条件下会显著增加瘫痪行为,而在线虫CL2006暴露于10-4mol/L铜离子的条件下会显著减少瘫痪行为.研究还发现这种外源性加入铜会改变线虫体内局部的锌、锰和铁等金属元素的稳态平衡.本研究数据显示,贝塔淀粉样多肽和铜的相互作用引起活性氧的累积,导致了线虫瘫痪,这一过程是通过调控sod-1,prdx-2,skn-1,hsp-60和hsp-16.2等基因来实现的.

References

[1]  13 Brenner S. The genetics of Caenorhabditis elegans. Genetics, 1974, 77: 71-94
[2]  14 Feng Z, Li W, Ward A, et al. A C. elegans model of nicotine-dependent behavior: regulation by TRP-family channels. Cell, 2006, 127: 621-633??
[3]  15 Cohen E, Bieschke J, Perciavalle R M, et al. Opposing activities protect against age-onset proteotoxicity. Science, 2006, 313: 1604-1610??
[4]  16 Gao Y X, Liu N Q, Chen C Y, et al. Mapping technique for biodistribution of elements in a model organism, Caenorhabditis elegans, after exposure to copper nanoparticles with microbeam synchrotron radiation X-ray fluorescence. J Anal At Spectrom, 2008, 23, 1121??
[5]  17 Schulz T J, Zarse K, Voigt A, et al. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab, 2007, 6: 280-293??
[6]  18 Hoogewijs D, Houthoofd K, Matthijssens F, et al. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Mol Biol, 2008, 9: 9??
[7]  19 Praticò D. Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol Sci, 2008, 29: 609-615??
[8]  20 Giglio A M, Hunter T, Bannister J V, et al. The copper/zinc superoxide dismutase gene of Caenorhabditis elegans. Biochem Mol Biol Int, 1994, 33: 41-44
[9]  21 Hunter T, Bannister W H, Hunter G J. Cloning, expression, and characterization of two manganese superoxide dismutases from Caenorhabditis elegans. J Biol Chem, 1997, 272: 28652-28659??
[10]  28 Hong M, Kwon J Y, Shim J, et al. Differential hypoxia response of hsp-16 genes in the nematode. J Mol Biol, 2004, 344: 369-381??
[11]  29 Good P F, Werner P, Hsu A, et al. Evidence for neuronal oxidative damage in Alzheimer’s disease. Am J of Pathol, 1996, 149: 21
[12]  30 Markesbery W R, Carney J M. Oxidative alterations in Alzheimer’s disease. Brain Pathol, 1999, 9: 133-146
[13]  31 Smith M A, Rottkamp C A, Nunomura A, et al. Oxidative stress in Alzheimer’s disease. Biochim Biophys Acta, 2000, 1502: 139-144
[14]  32 Zhu X, Raina A K, Perry G, et al. Alzheimer’s disease: the two-hit hypothesis. Lancet Neurol, 2004, 3: 219-226??
[15]  33 Perry G, Nunomura A, Hirai K, et al. Is oxidative damage the fundamental pathogenic mechanism of Alzheimer’s and other neurodegenerative diseases? Free Radic Biol Medi, 2002, 11: 1475-1479
[16]  34 Lovell M A, Robertson J D, Teesdale W J, et al. Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci, 1998, 158 : 47-52 ??
[17]  35 Huang X, Cuajungco M P, Atwood C S, et al. Cu(II) potentiation of Alzheimer aβ neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem, 1999, 274: 37111-37116 ??
[18]  36 Quinn J F, Crane S, Harris C, et al. Copper in Alzheimer’s disease: too much or too little? Expert Rev Neurother, 2009, 9: 631-637
[19]  1 Mattson M P. Pathways towards and away from Alzheimer’s disease. Nature, 2004, 430: 631-639??
[20]  2 Goedert M, Spillantini M G. A century of Alzheimer’s disease. Science, 2006, 314: 777-781??
[21]  3 Bush A I. The metallobiology of Alzheimer’s disease. Trends Neurosci, 2003, 26: 207-214??
[22]  4 Bush A I, Curtain C C. Twenty years of metallo-neurobiology: where to now? Eur Biophys J, 2007, 37: 241-245
[23]  5 Cater M A, McInnes K T, Li Q X, et al. Intracellular copper deficiency increases amyloid-beta secretion by diverse mechanisms. Biochem J, 2008, 412: 141-152??
[24]  6 Crouch P J, Hung L W, Adlard P A, et al. Increasing Cu bioavailability inhibits Abeta oligomers and tau phosphorylation. Proc Natl Acad Sci USA, 2009, 106: 381-386??
[25]  7 Markesbery W R. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med, 1997, 23: 134-147??
[26]  8 Sparks D L, Schreurs B G. Trace amounts of copper in water induce beta-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proc Natl Acad Sci USA, 2003, 100: 11065-11069??
[27]  9 Phinney A L, Drisaldi B, Schmidt S D, et al. In vivo reduction of amyloid-beta by a mutant copper transporter. Proc Natl Acad Sci USA, 2003, 100: 14193-14198 ??
[28]  10 Bayer T A, Sch?fer S, Simons A, et al. Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Abeta production in APP23 transgenic mice. Proc Natl Acad Sci USA , 2003, 100: 14187-14192??
[29]  11 Link C D. Invertebrate models of Alzheimer’s disease. Genes Brain Behav, 2005, 4: 147-156??
[30]  12 Link C D. C. elegans models of age-associated neurodegenerative diseases: lessons from transgenic worm models of Alzheimer’s disease. Exp Gerontol, 2006, 41: 1007-1013??
[31]  22 Taub J, Lau J F, Ma C, et al. A cytosolic catalase is needed to extend adult lifespan in C. elegans daf-C and clk-1 mutants. Nature, 1999, 399: 162-166
[32]  23 Isermann K, Liebau E, Roeder T, et al. A peroxiredoxin specifically expressed in two types of pharyngeal neurons is required for normal growth and egg production in Caenorhabditis elegans. J Mol Biol, 2004, 338: 745-755??
[33]  24 Simonetta S H, Romanowski A, Minniti A N, et al. Circadian stress tolerance in adult Caenorhabditis elegans. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2008, 194: 821-828??
[34]  25 An J H, Vranas K, Lucke M, et al. Regulation of the Caenorhabditis elegans oxidative stress defense protein SKN-1 by glycogen synthase kinase-3. Proc Natl Acad Sci USA, 2005, 102: 16275-16280??
[35]  26 Steinkraus K A, Smith E D, Davis C, et al. Dietary restriction suppresses proteotoxicity and enhances longevity by an hsf-1-dependent mechanism in Caenorhabditis elegans. Aging Cell, 2008, 7: 394-404??
[36]  27 Benedetti C, Haynes C M, Yang Y, et al. Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics, 2006, 174: 229-239??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133