全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

持续和间断激动β-肾上腺素受体对心脏重塑的不同作用

, PP. 351-360

Keywords: β-肾上腺素受体,活性氧,NADPH氧化酶,心肌肥厚,心肌纤维化

Full-Text   Cite this paper   Add to My Lib

Abstract:

心脏疾病常伴有交感神经系统过度激活及循环系统内儿茶酚胺水平增高,通过激动β-肾上腺素受体引起心脏重塑.β-AR激动剂异丙基肾上腺素常用来制备心脏重塑模型.然而β-AR不同的激动模式,脉冲式的间断激动与慢性持续激动对心脏重塑和心脏功能下降的影响是否不同,尚未见报道.为此,本研究比较了ISO间断给药与持续给药对小鼠心脏重塑和功能的影响.通过两种不同给药模式给予小鼠为期两周的ISO(5mgkg-1天-1)处理:每天皮下注射或通过微渗泵皮下持续输注.心脏重塑和功能通过超声心动图、血流动力学检测及组织学分析进行评价.相关信号分子通过蛋白免疫印迹和实时定量聚合酶链反应进行检测.结果表明,两种不同给药模式引起小鼠心肌肥厚的程度类似(心脏重量/体重比值:皮下注射组增加16%,埋泵组增加19%).但是,与埋泵组相比,ISO皮下注射组引起的心脏纤维化程度更重,并较早发生心脏功能下降.促纤维化因素,包括结缔组织生长因子和NADPH氧化酶亚单位NOX4的表达量在ISO皮下注射组都显著高于埋泵组.综上,与β-AR持续激动相比,β-AR间断激动引起心脏纤维化更重,并更易引起心脏功能失代偿.本研究结果为阐明β-AR不同激动模式在心脏病理重塑中的作用提供了新的视角,并为用肾上腺素受体激动剂复制心脏疾病模型的模式选择提供参考依据.

References

[1]  1 Floras J S. Sympathetic activation in human heart failure: diverse mechanisms, therapeutic opportunities. Acta Physiol Scand, 2003, 177: 391-398??
[2]  2 Lohse M J, Engelhardt S, Eschenhagen T. What is the role of beta-adrenergic signaling in heart failure. Circ Res, 2003, 93: 896-906??
[3]  3 Singh K, Communal C, Sawyer D B, et al. Adrenergic regulation of myocardial apoptosis. Cardiovasc Res, 2000, 45: 713-719??
[4]  4 Fowler M B, Laser J A, Hopkins G L, et al. Assessment of the beta-adrenergic receptor pathway in the intact failing human heart: progressive receptor down-regulation and subsensitivity to agonist response. Circulation, 1986, 74: 1290-1302
[5]  5 Goldspink D F, Burniston J G, Ellison G M, et al. Catecholamine-induced apoptosis and necrosis in cardiac and skeletal myocytes of the rat in vivo: the same or separate death pathways. Exp Physiol, 2004, 89: 407-416??
[6]  6 Communal C, Singh K, Pimentel D R, et al. Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation, 1998, 98: 1329-1334
[7]  7 Bos R, Mougenot N, Findji L, et al. Inhibition of catecholamine-induced cardiac fibrosis by an aldosterone antagonist. J Cardiovasc Pharmacol, 2005, 45: 8-13??
[8]  8 Grassi G, Quarti-Trevano F, Dell''oro R, et al. Essential hypertension and the sympathetic nervous system. Neurol Sci, 2008, 29: S33-S36
[9]  9 Flaa A, Eide I K, Kjeldsen S E, et al. Sympathoadrenal stress reactivity is a predictor of future blood pressure: an 18-year follow-up study. Hypertension, 2008, 52: 336-341??
[10]  10 Sharkey S W, Lesser J R, Zenovich A G, et al. Acute and reversible cardiomyopathy provoked by stress in women from the United States. Circulation, 2005, 111: 472-479??
[11]  11 Ueyama T, Kasamatsu K, Hano T, et al. Emotional stress induces transient left ventricular hypocontraction in the rat via activation of cardiac adrenoceptors: a possible animal model of ''tako-tsubo'' cardiomyopathy. Circ J, 2002, 66: 712-713??
[12]  12 Ueyama T, Senba E, Kasamatsu K, et al. Molecular mechanism of emotional stress-induced and catecholamine-induced heart attack. J Cardiovasc Pharmacol, 2003, 41: S115-118
[13]  13 Rona G, Chappel C I, Balazs T, et al. An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. AMA Arch Pathol, 1959, 67: 443-455
[14]  14 Zbinden G, Moe R A. Pharmacological studies on heart muscle lesions induced by isoproterenol. Ann N Y Acad Sci, 1969, 156: 294-308??
[15]  15 Kung H F, Blau M. Subcutaneous isoproterenol: a convenient rat model for early detection of myocardial necrosis. J Nucl Med, 1978, 19: 948-951
[16]  16 Kitagawa Y, Yamashita D, Ito H, et al. Reversible effects of isoproterenol-induced hypertrophy on in situ left ventricular function in rat hearts. Am J Physiol Heart Circ Physiol, 2004, 287: H277-285??
[17]  17 Benjamin I J, Jalil J E, Tan L B, et al. Isoproterenol-induced myocardial fibrosis in relation to myocyte necrosis. Circ Res, 1989, 65: 657-670
[18]  18 Clerk A, Michael A, Sugden P H. Stimulation of the p38 mitogen-activated protein kinase pathway in neonatal rat ventricular myocytes by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine: a role in cardiac myocyte hypertrophy. J Cell Biol, 1998, 142: 523-535
[19]  19 Bueno O F, De Windt L J, Tymitz K M, et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J, 2000, 19: 6341-6350??
[20]  20 Ramirez M T, Sah V P, Zhao X L, et al. The MEKK-JNK pathway is stimulated by alpha1-adrenergic receptor and ras activation and is associated with in vitro and in vivo cardiac hypertrophy. J Biol Chem, 1997, 272: 14057-14061??
[21]  21 Boluyt M O, Zheng J S, Younes A, et al. Rapamycin inhibits alpha 1-adrenergic receptor-stimulated cardiac myocyte hypertrophy but not activation of hypertrophy-associated genes. Evidence for involvement of p70 S6 kinase. Circ Res, 1997, 81: 176-186
[22]  24 Pesce L, Comellas A, Sznajder J I. Beta-adrenergic agonists regulate Na-K-ATPase via p70S6k. Am J Physiol Lung Cell Mol Physiol, 2003, 285: L802-807
[23]  25 Dhalla N S, Temsah R M, Netticadan T. Role of oxidative stress in cardiovascular diseases. J Hypertens, 2000, 18: 655-673??
[24]  26 Zhang G X, Kimura S, Nishiyama A, et al. Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. Cardiovasc Res, 2005, 65: 230-238??
[25]  27 Ruperez M, Lorenzo O, Blanco-Colio L M, et al. Connective tissue growth factor is a mediator of angiotensin II-induced fibrosis. Circulation, 2003, 108: 1499-1505??
[26]  28 Wang J, Xu N, Feng X, et al. Targeted disruption of Smad4 in cardiomyocytes results in cardiac hypertrophy and heart failure. Circ Res, 2005, 97: 821-828??
[27]  29 Liao W, Wang S, Han C, et al. 14-3-3 proteins regulate glycogen synthase 3beta phosphorylation and inhibit cardiomyocyte hypertrophy. FEBS J, 2005, 272: 1845-1854??
[28]  30 Perrino C, Naga P S V, Mao L, et al. Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. J Clin Invest, 2006, 116: 1547-1560??
[29]  31 Han Y S, Tveita T, Kondratiev T V, et al. Changes in cardiovascular beta-adrenoceptor responses during hypothermia. Cryobiology, 2008, 57: 246-250??
[30]  32 Kralova E, Mokran T, Murin J, et al. Electrocardiography in two models of isoproterenol-induced left ventricular remodeling. Physiol Res, 2008, 57: S83-89
[31]  33 Hohimer A R, Davis L E, Hatton D C. Repeated daily injections and osmotic pump infusion of isoproterenol cause similar increases in cardiac mass but have different effects on blood pressure. Can J Physiol Pharmacol, 2005, 83: 191-197??
[32]  34 Freund C, Schmidt-Ullrich R, Baurand A, et al. Requirement of nuclear factor-kappaB in angiotensin II- and isoproterenol-induced cardiac hypertrophy in vivo. Circulation, 2005, 111: 2319-2325??
[33]  35 Xu Q, Dalic A, Fang L, et al. Myocardial oxidative stress contributes to transgenic beta-adrenoceptor activation-induced cardiomyopathy and heart failure. Br J Pharmacol, 2011, 162: 1012-1028??
[34]  22 Sadoshima J, Izumo S. Rapamycin selectively inhibits angiotensin II-induced increase in protein synthesis in cardiac myocytes in vitro. Potential role of 70-kD S6 kinase in angiotensin II-induced cardiac hypertrophy. Circ Res, 1995, 77: 1040-1052
[35]  23 Hu Y, Zhang Y, Venkitaramani D V, et al. Translation of striatal-enriched protein tyrosine phosphatase (STEP) after beta1-adrenergic receptor stimulation. J Neurochem, 2007, 103: 531-541??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133