全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多尺度的小鼠ECG信号复杂性与特征频率研究

, PP. 304-312

Keywords: ECG,多重分形,复杂度,频率尺度因子,特征频率

Full-Text   Cite this paper   Add to My Lib

Abstract:

已有的生理信号非线性分析仅研究了信号在单一采样频率下复杂度的差异.分析认为,可通过一个频率尺度因子寻找与生命活动密切相关的多重分形特性谱参数,该参数对生理、病理活动状态具有敏感性.通过小鼠药物实验模拟不同的生理和病理条件,研究并分析了健康小鼠与不同加药组小鼠心电图(electrocardiogram,ECG)信号的质量指数谱曲率随尺度因子分布,确定该信号复杂度最强、同时对疾病最敏感的特征频率范围,并得出心跳频率、心跳动力学复杂度以及ECG信号最敏感频率范围的内在联系.结果表明,在某一尺度因子范围内,小鼠ECG信号的质量指数谱曲率绝对值最大,并且这个最大值所在的尺度因子(或频率)范围不随计算的数据长度和最大粗粒化尺度因子的变化而改变.小鼠心率与其心跳动力学非线性复杂度之间并无直接联系,只与能够表达该动力学复杂度的ECG信号最敏感的频率范围有关.与心跳动力学复杂度有直接联系的是心脏健康状况,这两者在一定尺度因子范围内正相关.随着小鼠心跳频率升高,该ECG信号的敏感频率范围段也随之向高端移动.

References

[1]  1 Babloyantz A, Destexhe A. Is the normal heart a periodic oscillator? Biol Cybern, 1988, 58: 203-211
[2]  2 Bogaert C, Beckers F, Ramaekers D, et al. Analysis of heart rate variability with correlation dimension method in a normal population andin heart transplant patients. Auton Neurosci, 2001, 90: 142-147??
[3]  3 Eckmann J P, Kamphorst S O, Ruelle D, et al. Liapunov exponents from time series. Phys Rev A, 1986, 34: 4971-4979??
[4]  4 Richman J S, Moorman J R. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart CircPhysiol, 2000, 278: H2039-H2049
[5]  5 Halsey T C, Jensen M H, Kadanoff L P, et al. Fractal measures and their singularities: the characterization of strange sets. Phys Rev A, 1986,33: 1141-1151??
[6]  6 Prasad R R, Meneveau C, Sreenivasan K R. Multifractal nature of the dissipation field of passive scalars in fully turbulent flows. Phys RevLett, 1988, 61: 74-77
[7]  7 Milde F, Romer R A, Schreiber M. Multifractal analysis of the metal-insulator transition in anisotropic systems. Phys Rev B, 1997, 55:9463-9469??
[8]  8 Ivanov P C, Amaral L A N, Goldberger A L, et al. Multifractality in human heartbeat dynamics. Nature, 1999, 399: 461-465??
[9]  9 Stanley H E, Amaral L A N, Goldberger A L, et al. Statistical physics and physiology: monofractal and multifractal approaches. Physica A,1999, 270: 309-324??
[10]  10 Grosse I, Herzel H, Buldyrev S V, et al. Species independence of mutual information in coding and noncoding DNA. Phys Rev E, 2000, 61:5624-5629??
[11]  11 Wang J, Ning X B, Chen Y. Multifractal analysis of electronic cardiogram taken from healthy and unhealthy adult subjects. Physica A, 2003,323: 561-568??
[12]  12 Ashkenazy Y, Havlin S, Ivanov P C, et al. Magnitude and sign scaling in power-law correlated time series. Physica A, 2003, 323: 19-41??
[13]  13 Popivanov D, Jivkova S, Stomonyakov V, et al. Effect of independent component analysis on multifractality of EEG during visual-motortask. Signal Process, 2005, 85: 2112-2123??
[14]  15 马千里, 宁新宝, 王俊, 等. 描述睡眠脑电多重分形特性的一种新参数. 科学通报, 2006, 51: 1842-1846
[15]  16 Ivanov P C, Ma Q L, Bartsch R P, et al. Levels of complexity in scale-invariant neural signals. Phys Rev E, 2009, 79: 041920??
[16]  14 Kotani K, Struzik Z R, Takamasu K, et al. Model for complex heart rate dynamics in health and diseases. Phys Rev E, 2005, 72: 041904??
[17]  17 Amaral L A N, Ivanov P C, Aoyagi N, et al. Behavior-independent features of complex heartbeat dynamics. Phys Rev Lett, 2001, 86:6026-6029??
[18]  18 Costa M, Goldberger A L, Peng C K. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett, 2002, 89: 068102??
[19]  19 Costa M, Peng C K, Goldberger A L, et al. Multiscale entropy analysis of human gait dynamics. Physica A, 2003, 330: 53-60??
[20]  20 Wang J, Ning X B, Ma Q L, et al. Multiscale multifractality analysis of a 12-lead electrocardiogram. Phys Rev E, 2005, 71: 062902??
[21]  21 Yang X D, Ning X B, Wang J. Multifractal analysis of human synchronous 12-lead ECG signals using multiple scale factors. Physica A,2007, 384: 413-422??
[22]  22 Chhabra A, Jensen R V. Direct determination of the f(α) singularity spectrum. Phys Rev Lett, 1989, 62: 1327-1330??
[23]  23 宁新宝, 卞春华, 王俊, 等. 心脏电活动过程的非线性分析. 科学通报, 2006, 51: 764-771
[24]  24 Grassberger P, Procaccia I. Characterization of strange attractors. Phys Rev Lett, 1983, 50: 346-349??
[25]  25 杨小冬, 何爱军, 周勇, 等. 复杂生理信号的多重分形质量指数谱分析. 科学通报, 2010, 55: 1866-1872
[26]  26 Ivanov P C, Amaral L A N, Goldberger A L, et al. From 1/f noise to multifractal cascades in heartbeat dynamics. Chaos, 2001, 11: 641-652??
[27]  27 Wu S, Ko Y S, Teng M S, et al. Adriamycin-induced cardiomyocyte and endothelial cell apoptosis: in vitro and in vivo studies. J Mol CellCardiol, 2002, 34: 1595-1607??
[28]  28 Outomuro D, Grana D R, Azzato F, et al. Adriamycin-induced myocardial toxicity: new solutions for an old problem? Int J Cardiol, 2007,117: 6-15
[29]  29 Ning X B, Li D H, Ding S W, et al. Detection and identification of 12-lead synchronous ECG waveform (in Chinese). J Nanjing Univ: NatSci Ed, 2004, 40: 129-136
[30]  30 Witten I H, Frank E. Data Mining: Practical Machine Learning Tools and Techniques. 2nd ed. New York: Morgan Kaufmann, 2005.149-154
[31]  31 Bishop C M. Pattern Recognition and Machine Learning. New York: Springer, 2006
[32]  32 Turk M, Pentland A. Eigenfaces for recognition. J Cognitive Neurosci, 1991, 3: 71-86??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133