全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

TiO2纳米管阵列的表面特性对猪肾小管上皮细胞生长状态的影响

DOI: 10.1360/052010-549, PP. 249-257

Keywords: TiO2纳米管阵列,表面特性,生物相容性,猪肾小管上皮细胞,细胞黏附

Full-Text   Cite this paper   Add to My Lib

Abstract:

TiO2纳米管阵列由于其优异的生物相容性及光催化效应,在生物医学领域引起了广泛关注.但能否将肾小管上皮细胞较好地黏附于TiO2纳米管材料并使其发挥肾小管的功能,目前还未见报道.为研究TiO2纳米管材料的表面特性对猪肾小管上皮细胞株(LLC-PK1)的黏附及增殖影响,采用阳极氧化法制备新型高强度的TiO2纳米管阵列,利用荧光显微镜考察了TiO2纳米管阵列光照特性、晶型结构及几何形貌参数对LLC-PK1细胞黏附的影响,采用MTT方法检测了黏附细胞的活性;同时使用扫描电子显微镜观察了4种不同管径上细胞生长的形态,并与纯钛片上细胞的生长形态进行对照.结果表明,管径为70nm的TiO2纳米管阵列膜最有利于LLC-PK1细胞的黏附及增殖,且细胞的活性最高;未经紫外光照射时锐钛矿型的TiO2比无定型更有利于细胞的黏附,然而锐钛矿型TiO2经紫外光照射后会导致细胞凋亡.扫描电子显微镜观察显示,细胞在纳米管上延伸为长条状,而在钛片上则呈堆积平板状.证实TiO2纳米管阵列膜具有良好的生物相容性,有助于改善细胞与材料的黏附.

References

[1]  13 Paulose M, Lily P, Grimes C A, et al. Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes. J
[2]  Membr Sci, 2008, 319: 199–205
[3]  14 董兴刚. 生物人工肾小管体外构建的初步研究. 浙江: 浙江大学博士论文, 2009
[4]  15 Popat K C, Leoni L, Grimes C A, et al. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials, 2007, 28:
[5]  3188–3197
[6]  16 Popat K C, Eltgroth M L, Grimes C A, et al. Titania nanotubes: a novel platform for drug-eluting coatings for medical implants. Wiley Inter
[7]  Science, 2007, 3: 1878–1881
[8]  17 Popat K C, Eltgroth M L, Grimes C A, et al. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on
[9]  antibiotic-loaded titania nanotubes. Biomaterials, 2007, 28: 4880–4888
[10]  18 Park J, Bauer S, Schmuki P, et al. Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2
[11]  nanotube surfaces. Nano Lett, 2009, 9: 3157–3164
[12]  19 Bauer S, Park J, Mark K, et al. Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes. Acta Biomater,
[13]  2008, 4: 1576–1582
[14]  20 陶杰, 陶海军, 包祖国, 等. 有机电解液中钛基材表面TiO2 纳米管阵列生长机制的研究. 稀有金属材料与工程, 2009, 38: 967–971
[15]  21 Peng L, Eltgroth M L, Grimes C A, et al. The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation.
[16]  Biomaterials, 2009, 30: 1268–1272
[17]  22 Peng L, LaTempa T J, Grimes C A, et al. Whole genome expression analysis reveals differential effects of TiO2 nanotubes on vascular cells.
[18]  Nano Lett, 2010, 10: 143–148
[19]  23 李广忠, 张健, 张文彦, 等. TiO2 纳米管阵列膜的制备及结构研究. 稀有金属材料与工程, 2009, 38: 311–315
[20]  24 Tanaka M, Takayama A, Ito E, et al. Effect of pore size of self-organized honeycomb-patterned polymer films on spreading, focal adhesion,
[21]  proliferation, and function of endothelial cells. J Nanosci Nanotechnol, 2007, 7: 763–772
[22]  25 McGrath J L, Osborn E A, Tardy Y S, et al. Regulation of the actin cycle in vivo by actin filament severing. Proc Natl Acad Sci USA, 2000,
[23]  97: 6532–6537
[24]  26 Yu W Q, Jiang X Q, Zhang F Q, et al. The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and
[25]  differentiation. J Biomed Mater Res A, 2010, 94: 1012–1022
[26]  27 王竹梅, 李月明, 夏光华, 等. TiO2 纳米管阵列的制备及其光催化性能研究. 人工晶体学报, 2009, 38: 1410–1415
[27]  1 Sun I F, Lee S S, Lin S D, et al. Continuous arteriovenous hemodialysis and continuous venovenous hemofiltration in burn patients with
[28]  acute renal failure. Kaohsiung J Med Sci, 2007, 23: 344–351
[29]  2 Zobel G, Rodl S, Urlesberger B, et al. Continuous renal replacement therapy in critically ill patients. Kidney Int Suppl, 1998, 66: 169–173
[30]  3 Humes H D, Buffington D A, Mackay S M, et al. Replacement of renal function in uremic animals with a tissue-engineered kidney. Nat
[31]  Biotechnol, 1999, 17: 451–455??
[32]  4 Humes H D, Mackay S M, Funke A J, et al. Tissue engineering of the bioartificial renal tubule assist device: in vitro transport and metabolic
[33]  characteristics. Kid Int, 1999, 55: 2502
[34]  5 Humes H D, Weitzel W F, Bartlett R H, et al. Initial clinical results of the bioartificial kidney containing human cells in ICU patients with
[35]  acute renal failure. Kid Int, 2004, 66: 1578
[36]  6 Humes H D, Buffington D A, Lou L, et al. Cell therapy with a tissue-engineered kidney reduces the multiple-organ consequences of septic
[37]  shock. Crit Care Med, 2003, 31: 2421
[38]  7 应旭旻. 生物人工肾小管体外构建及功能测定的研究. 南京: 南京医科大学硕士论文, 2001
[39]  8 应旭旻. 生物人工肾小管体外构建、功能优化、治疗MODS/MOF 并ARF 的实验研究. 南京: 南京医科大学博士论文, 2004
[40]  9 黄大伟, 傅博, 陈香美, 等. 细胞混合种植法构建生物人工肾小管的初步研究. 中国药物与临床, 2008, 8: 165–167
[41]  10 黄大伟. 生物人工肾单位的构建与体外功能评估. 北京: 中国人民解放军军医进修学院博士论文, 2008
[42]  11 Fissell W H, Dubnisheva A, Eldridge A N, et al. High-performance silicon nanopore hemofiltration membranes. J Membr Sci, 2009, 326: 58??
[43]  12 Cornelius T W, Apel P Y, Schiedt B, et al. Investigation of nanopore evolution in ion track-etched polycarbonate membranes. Nucl Instrum Meth B, 2007, 265: 553??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133