全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

人类Ⅱ相药物毒物代谢酶非同义单核苷酸多态性的表型预测:分子进化观

, PP. 97-108

Keywords: 表型,PolyPhen,Panther,SNAP,SNP,Ⅱ相药物毒物代谢酶

Full-Text   Cite this paper   Add to My Lib

Abstract:

药物毒物代谢酶编码区的非同义单核苷酸多态性(nsSNPs)导致氨基酸改变,从而可能改变相应蛋白质的功能,使人体对有关药物毒物产生异常反应,亦与疾病易感性关联.在人类Ⅱ相代谢酶基因中已发现大量nsSNPs,但对这些酶nsSNPs基因型和表型间的关系了解甚少.本研究从Ensembl基因组数据库和NCBISNP数据库识别出104个人类Ⅱ相酶基因的923个经确认的nsSNPs.用PolyPhen,Panther和SNAP算法预测,发现44%~59%的nsSNPs影响到蛋白质功能.本研究的预测结果与已有实验研究证据基本吻合.68%的已知有害nsSNPs被正确预测为有害.本研究识别出多个尚未经实验研究的功能氨基酸.Panther和PolyPhen的预测结果吻合,SNAP非中性预测结果与PolyPhen预测分值亦吻合.进化上非中性的(去稳定化的)氨基酸替换可能是Ⅱ相酶活性改变,产生疾病易感性和药物/外源物毒性的致病基础.本研究还在有害nsSNPs预测的框架内阐明了Ⅱ相酶的分子进化模式.

References

[1]  13 Hirata H, Hinoda Y, Okayama N, et al. COMT polymorphisms affecting protein expression are risk factors for endometrial cancer. MolCarcinog, 2008, 47: 768–774
[2]  39 Walraven J M, Zang Y, Trent J O, et al. Structure/function evaluations of single nucleotide polymorphisms in human N-acetyltransferase 2.Curr Drug Metab, 2008, 9: 471–486??
[3]  40 O’Halloran A M, Patterson C C, Horan P, et al. Genetic polymorphisms in platelet-related proteins and coronary artery disease:investigation of candidate genes, including N-acetylgalactosaminyltransferase 4 (GALNT4) and sulphotransferase 1A1/2 (SULT1A1/2). JThromb Thrombolysis, 2009, 27: 175–184
[4]  41 Thiele H, Sakano M, Kitagawa H, et al. Loss of chondroitin 6-O-sulfotransferase-1 function results in severe human chondrodysplasia withprogressive spinal involvement. Proc Natl Acad Sci USA, 2004, 101: 10155–10160??
[5]  42 Hao D C, Sun J, Furnes B, et al. Allele and genotype frequencies of polymorphic FMO3 gene in two genetically distinct populations. CellBiochem Funct, 2007, 25: 443–453??
[6]  43 Hao D C, Chen S L, Mu J, et al. Molecular phylogeny, long-term evolution, and functional divergence of flavin-containing monooxygenases.Genetica, 2009b, 137: 173–187
[7]  44 Wang L L, Li Y, Zhou S F. A bioinformatics approach for the phenotype prediction of nonsynonymous single nucleotide polymorphisms inhuman cytochromes P450. Drug Metab Dispos, 2009, 37: 977–991??
[8]  45 Xi T, Jones I M, Mohrenweiser H W. Many amino acid substitution variants identified in DNA repair genes during human populationscreenings are predicted to impact protein function. Genomics, 2004, 83: 970–979??
[9]  46 Doss C G, Sethumadhavan R. Investigation on the role of nsSNPs in HNPCC genes--a bioinformatics approach. J Biomed Sci, 2009, 16: 42??
[10]  47 Boyko A R, Williamson S H, Indap A R, et al. Assessing the evolutionary impact of amino acid mutations in the human genome. PLoSGenet, 2008, 4: e1000083
[11]  48 Ding K, Kullo I J. Molecular population genetics of PCSK9: a signature of recent positive selection. Pharmacogenet Genomics, 2008, 18:169–179??
[12]  49 Li C, Wu Q. Adaptive evolution of multiple-variable exons and structural diversity of drug-metabolizing enzymes. BMC Evol Biol, 2007, 7:69??
[13]  50 Chasman D, Adams R M. Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: structure-basedassessment of amino acid variation. J Mol Biol, 2001, 307: 683–706??
[14]  51 Sunyaev S, Ramensky V, Koch I, et al. Prediction of deleterious human alleles. Hum Mol Genet, 2001, 10: 591–597??
[15]  52 Ng P C, Henikoff S. Accounting for human polymorphisms predicted to affect protein function. Genome Res, 2002, 12: 436–446??
[16]  53 Kumar S, Suleski M P, Markov G J, et al. Positional conservation and amino acids shape the correct diagnosis and population frequencies ofbenign and damaging personal amino acid mutations. Genome Res, 2009, 19: 1562–1569??
[17]  54 Ng P C, Henikoff S. Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet, 2006, 7: 61–80??
[18]  55 Cheng T M, Lu Y E, Vendruscolo M, et al. Prediction by graph theoretic measures of structural effects in proteins arising fromnon-synonymous single nucleotide polymorphisms. PLoS Comput Biol, 2008, 4: e1000135??
[19]  56 Lohmueller K E, Indap A R, Schmidt S, et al. Proportionally more deleterious genetic variation in European than in African populations.Nature, 2008, 451: 994–997??
[20]  1 McCarver D G, Hines R N. The ontogeny of human drug-metabolizing enzymes: phase II conjugation enzymes and regulatory mechanisms.J Pharmacol Exp Ther, 2002, 300: 361–366??
[21]  2 Zhou S F, Di Y M, Chan E, et al. Clinical pharmacogenetics and potential application in personalized medicine. Curr Drug Metab, 2008, 9:738–784??
[22]  3 Wen Z, Martin D E, Bullock P, et al. Glucuronidation of anti-HIV drug candidate bevirimat: identification of humanUDP-glucuronosyltransferases and species differences. Drug Metab Dispos, 2007, 35: 440–448??
[23]  4 Mackenzie P I, Bock K W, Burchell B, et al. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily.Pharmacogenet Genomics, 2005, 15: 677–685??
[24]  5 Di Y M, Chan E, Wei M Q, et al. Prediction of deleterious non-synonymous single-nucleotide polymorphisms of human uridine diphosphateglucuronosyltransferase genes. AAPS J, 2009, 11: 469–480??
[25]  6 Olson K C, Dellinger R W, Zhong Q, et al. Functional characterization of low-prevalence missense polymorphisms in theUDP-glucuronosyltransferase 1A9 gene. Drug Metab Dispos, 2009, 37: 1999–2007??
[26]  7 Iida A, Saito S, Sekine A, et al. Catalog of 434 single-nucleotide polymorphisms (SNPs) in genes of the alcohol dehydrogenase, glutathioneS-transferase, and nicotinamide adenine dinucleotide, reduced (NADH) ubiquinone oxidoreductase families. J Hum Genet, 2001, 46:385–407??
[27]  8 Nowell S, Falany C N. Pharmacogenetics of human cytosolic sulfotransferases. Oncogene, 2006, 25: 1673–1678??
[28]  9 Hein D W. N-acetyltransferase SNPs: emerging concepts serve as a paradigm for understanding complexities of personalized medicine.Expert Opin Drug Metab Toxicol, 2009, 5: 353–366??
[29]  10 Seki T, Tanaka T, Nakamura Y. Genomic structure and multiple single-nucleotide polymorphisms (SNPs) of the thiopurineS-methyltransferase (TPMT) gene. J Hum Genet, 2000, 45: 299–302??
[30]  11 Ujiie S, Sasaki T, Mizugaki M, et al. Functional characterization of 23 allelic variants of thiopurine S-methyltransferase gene(TPMT*2-*24). Pharmacogenet Genomics, 2008, 18: 887–893??
[31]  12 Diatchenko L, Slade G D, Nackley A G, et al. Genetic basis for individual variations in pain perception and the development of a chronicpain condition. Hum Mol Genet, 2005, 14: 135–143??
[32]  14 Rodríguez-Nóvoa S, Barreiro P, Jiménez-Nácher I, et al. Overview of the pharmacogenetics of HIV therapy. Pharmacogenomics J, 2006, 6:234–245
[33]  15 Brumme Z L, Harrigan P R. The impact of human genetic variation on HIV disease in the era of HAART. AIDS Rev, 2006, 8: 78–87
[34]  16 Blanchard R L, Freimuth R R, Buck J, et al. A proposed nomenclature system for the cytosolic sulfotransferase (SULT) superfamily.Pharmacogenetics, 2004, 14: 199–211??
[35]  17 Mannervik B, Board P G, Hayes J D, et al. Nomenclature for mammalian soluble glutathione transferases. Methods Enzymol, 2005, 401:1–8??
[36]  18 Hein D W, Boukouvala S, Grant D M, et al. Changes in consensus arylamine N-acetyltransferase gene nomenclature. PharmacogenetGenomics, 2008, 18: 367–368
[37]  19 Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res, 2002, 30: 3894–3900??
[38]  20 Thomas P D, Campbell M J, Kejariwal A, et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res,2003, 13: 2129–2141??
[39]  21 Thomas P D, Kejariwal A. Coding single-nucleotide polymorphisms associated with complex vs. Mendelian disease: evolutionary evidencefor differences in molecular effects. Proc Natl Acad Sci USA, 2004, 101: 15398–15403??
[40]  22 Bromberg Y, Rost B. SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res, 2007, 35: 3823–3835??
[41]  23 Ng P C, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res, 2003, 31: 3812–3814??
[42]  24 Sunyaev S R, Eisenhaber F, Rodchenkov I V, et al. PSIC: profile extraction from sequence alignments with position-specific counts ofindependent observations. Protein Eng, 1999, 12: 387–394??
[43]  25 Kosakovsky Pond S L, Frost S D. Not so different after all: a comparison of methods for detecting amino acid sites under selection. MolBiol Evol, 2005, 22: 1208–1222
[44]  26 Wernersson R, Pedersen A G. RevTrans: Multiple alignment of coding DNA from aligned amino acid sequences. Nucl Acid Res, 2003, 31:3537–3539??
[45]  27 Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol, 2007, 24: 1586–1591??
[46]  28 Doron-Faigenboim A, Pupko T A. Combined empirical and mechanistic codon model. Mol Biol Evol, 2007, 24: 388–397??
[47]  29 Hao D C, Yang L, Huang B. Molecular evolution of paclitaxel biosynthetic genes TS and DBAT of Taxus species. Genetica, 2009a, 135:123–135
[48]  30 Hao D C, Chen S L, Xiao P G. Molecular evolution and positive Darwinian selection of the chloroplast maturase matK. J Plant Res, 2010,123: 241–247??
[49]  31 Pond S L, Frost S D, Muse S V. HyPhy: Hypothesis testing using phylogenies. Bioinformatics, 2005, 21: 676–679??
[50]  32 Pond S L, Frost S D. A genetic algorithm approach to detecting lineage-specific variation in selection pressure. Mol Biol Evol, 2005, 22:478–485??
[51]  33 Valdmanis P N, Verlaan D J, Rouleau G A. The proportion of mutations predicted to have a deleterious effect differs between gain and lossof function genes in neurodegenerative disease. Hum Mutat, 2009, 30: E481–489??
[52]  34 Iwai M, Maruo Y, Ito M, et al. Six novel UDP-glucuronosyltransferase (UGT1A3) polymorphisms with varying activity. J Hum Genet,2004, 49: 123–128??
[53]  35 Huang Y H, Galijatovic A, Nguyen N, et al. Identification and functional characterization of UDP-glucuronosyltransferases UGT1A8*1,UGT1A8*2 and UGT1A8*3. Pharmacogenetics, 2002, 12: 287–297
[54]  36 Bernard O, Tojcic J, Journault K, et al. Influence of nonsynonymous polymorphisms of UGT1A8 and UGT2B7 metabolizing enzymes onthe formation of phenolic and acyl glucuronides of mycophenolic acid. Drug Metab Dispos, 2006, 34: 1539–1545??
[55]  37 Martineau I, Tchernof A, Bélanger A. Amino acid residue ILE211 is essential for the enzymatic activity of human UDP-glucuronosyltransferase1A10 (UGT1A10). Drug Metab Dispos, 2004, 32: 455–459??
[56]  38 Agúndez J A, Ladero J M. Glutathione S-transferase GSTT1 and GSTM1 allozymes: beyond null alleles. Pharmacogenomics, 2008, 9:359–363??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133