56 Izsvak Z, Stuwe E E, Fiedler D, et al. Healing the wounds inflicted by sleeping beauty transposition by double-strand break repair inmammalian somatic cells. Mol cell, 2004, 13: 279-290??
[2]
57 Plasterk R H, Groenen J T. Targeted alterations of the Caenorhabditis elegans genome by transgene instructed DNA double strand breakrepair following Tc1 excision. EMBO J, 1992, 11: 287-290
[3]
58 Yant S R, Kay M A. Nonhomologous-end-joining factors regulate DNA repair fidelity during Sleeping Beauty element transposition inmammalian cells. Mol Cell Biol, 2003, 23: 8505-8518??
[4]
59 Levitt A, Emmons S W. The Tc2 transposon in Caenorhabditis elegans. Proc Natl Acad Sci USA, 1989, 86: 3232-3236??
[5]
60 Evgen''ev M B, Zelentsova H, Shostak N, et al. Penelope, a new family of transposable elements and its possible role in hybrid dysgenesis inDrosophila virilis. Proc Natl Acad Sci USA, 1997, 94: 196-201??
[6]
61 Rubin E, Levy A A. Abortive gap repair: underlying mechanism for Ds element formation. Mol Cell Biol, 1997, 17: 6294-6302
[7]
62 De Boer J G, Yazawa R, Davidson W S, et al. Bursts and horizontal evolution of DNA transposons in the speciation of pseudotetraploidsalmonids. BMC Genomics, 2007, 8: 1-10??
[8]
63 Johnson L J, Brookfield J F Y. A test of the master gene hypothesis for interspersed repetitive DNA sequences. Mol Biol Evol, 2006, 23:235-239??
[9]
64 Izsvak Z, Ivics Z, Shimoda N, et al. Short inverted-repeat transposable elements in teleost fish and implications for a mechanism of theiramplification. J Mol Evol, 1999, 48: 13-21??
[10]
65 Feschotte C, Swamy L, Wessler S R. Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationshipswith stowaway miniature inverted repeat transposable elements (MITEs). Genetics, 2003, 163: 747-758
[11]
66 Sijen T, Plasterk R H A. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature, 2003, 426: 310-314??
[12]
1 Aziz R K, Breitbart M, Edwards, R A. Transposases are the most abundant, most ubiquitous genes in nature. Nucleic Acids Res, 2010, 9:1-11
[13]
2 McClintock B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA, 1950, 36: 344-355??
[14]
3 McClintock B. The significance of responses of the genome to challenge. Science, 1984, 226: 792-801??
[15]
4 Bohne A, Brunet F, Galiana-Arnoux D, et al. Transposable elements as drivers of genomic and biological diversity in vertebrates.Chromosome Res, 2008, 16: 203-215??
[16]
5 Evgen''ev M B. Mobile elements and genome evolution. Mol Biol, 2007, 41: 203-213??
[17]
6 Kazazian Jr H H. Mobile elements: drivers of genome evolution. Science, 2004, 303: 1626-1632??
[18]
7 Finnegan D J. Transposable elements in eukaryotes. Int Rev Cytol, 1985, 93: 281-326??
[19]
8 Plasterk R H A, Izsvak Z, Ivics Z. Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet, 1999, 15: 326-332??
[20]
9 Robertson H M. The Tcl-mariner superfamily of transposons in animals. J Insect Physiol, 1995, 41: 99-105??
[21]
10 Feschotte C, Pritham E J. DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet, 2007, 41: 331-368??
[22]
11 Barabas O, Ronning D R, Guynet C, et al. Mechanism of IS200/IS605 family DNA transposases: activation and transposon-directed targetsite selection. Cell, 2008, 132: 208-220??
[23]
12 Shao H G, Tu Z J. Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon andreclassification of the DD37D and DD39D transposons. Genetics, 2001, 159: 1103-1115
[24]
13 Benjamin B, Yves B, Corinne A G. Assembly of the Tc1 and mariner transposition initiation complexes depends on the origins of theirtransposase DNA binding domains. Genetica, 2007, 130: 105-120??
[25]
14 Bessereau J L, de la Synapse B C. Transposons in C. elegans. In: Hodgkin J, Anderson P, eds. Wormbook, 2006, 1-13, http://www.wormbook.org
[26]
15 Oosumi T, Garlick B, Belknap W R. Identification of putative nonautonomous transposable elements associated with several transposonfamilies in Caenorhabditis elegans. J Mol Evol, 1996, 43: 11-18??
[27]
16 Liao L W, Rosenzweig B, Hirsh D. Analysis of a transposable element in Caenorhabditis elegans. Proc Natl Acad Sci USA, 1983, 80:3585-3589
[28]
17 Jacobson J W, Medhora M M, Hartl D L. Molecular structure of a somatically unstable transposable element in Drosophila. Proc Natl AcadSci USA, 1986, 83: 8684-8688??
[29]
18 Ivics Z, Hackett P B, Plasterk R H, et al. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transpositionin human cells. Cell, 1997, 91: 501-510??
[30]
19 Franz G, Savakis C. Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons. NucleicAcids Res, 1991, 19: 6646
[31]
20 Ke Z X, Grossman G L, Cornel A J, et al. Quetzal: a transposon of the Tc1 family in the mosquito Anopheles albimanus. Genetica, 1996, 98:141-147??
[32]
21 Ivics Z, Kaufman C D, Zayed H, et al. The sleeping beauty transposable element: evolution, regulation and genetic applications. Curr IssuesMol Biol, 2004, 6: 43-56
[33]
22 van Luenen H G A M, Colloms S D, Plasterk R H A. The mechanism of transposition of Tc3 in C. elegans. Cell, 1994, 79: 293-301??
[34]
23 Rezsohazy R, Van Luenen H G A M, Durbin R M, et al. Tc7, a Tc1-hitch hiking transposon in Caenorhabditis elegans. Nucleic Acids Res,1997, 25: 4048-4054
[35]
24 Grossman G L, Cornel A J, Rafferty C S, et al. Tsessebe, Topi and Tiang: three distinct Tc1-like transposable elements in the malaria vector,Anopheles gambiae. Genetica, 1999, 105: 69-80
[36]
25 Liu D, You C P, Liu S J, et al. Characterization of a novel Tc1-like transposon from bream (Cyprinidae, Megalobrama) and its geneticvariation in the polyploidy progeny of bream-red crucian carp crosses. J Mol Evol, 2009, 69: 395-403??
[37]
26 Liu Z, Li P, Kucuktas H, et al. Characterization of nonautonomous TC1-like transposable elements of channel catfish (Ictalurus punctatus).Fish Physiol Biochem, 1999, 21: 65-72??
[38]
27 Izsvak Z, Ivics Z, Hackett P B. Characterization of a Tc1-like transposable element in zebrafish (Danio rerio). Mol Gen Genet, 1995, 247:312-322??
[39]
28 Ahn S J, Kim M S, Jang J H, et al. MMTS, a New Subfamily of Tc1-like Transposons. Mol Cells, 2008, 26: 387-395
[40]
29 Jee S H, Kim G E, Hong S H, et al. Characterization of EamaT1, a member of maT family of transposable elements from the earthwormEisenia andrei (Annelida, Oligochaeta). Mol Genetd Genomics, 2007, 278: 479-486??
[41]
30 Miskey C, Izsvak Z, Plasterk R H, et al. The frog prince: a reconstructed transposon from Rana pipiens with high transpositional activity invertebrate cells. Nucleic Acids Res, 2003, 31: 6873-6881??
[42]
31 Leaver M J. A family of Tc1-like transposons from the genomes of fishes and frogs: evidence for horizontal transmission. Gene, 2001, 271:203-214??
[43]
32 Clark K J, Carlson D F, Leaver M J, et al. Passport, a native Tc 1 transposon from flatfish, is functionally active in vertebrate cells. NucleicAcids Res, 2009, 37: 1239-1247
[44]
33 Kapitonov V V, Jurka J. Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci USA, 2001, 98: 8714-8719??
[45]
34 Khan S A. Rolling-circle replication of bacterial plasmids. Microbiol Mol Biol Rev, 1997, 61: 442-455
[46]
35 Kapitonov V V, Jurka J. Self-synthesizing DNA transposons in eukaryotes. Proc Natl Acad Sci USA, 2006, 103: 4540-4545??
[47]
36 Vos J C, Baere I D, Plasterk R H A. Transposase is the only nematode protein required for in vitro transposition of Tc1. Genes Dev, 1996,10: 755-761??
[48]
37 Hua-Van A, Langin T, Daboussi M J. Aberrant transposition of a Tc1-mariner element, impala, in the fungus Fusarium oxysporum. MolGenet Genomics, 2002, 267: 79-87
[49]
38 Lavoie B D, Chaconas G. Immunoelectron microscopic analysis of the A, B, and HU protein content of bacteriophage Mu transpososomes. JBiol Chem, 1990, 265: 1623-1627
[50]
39 Haykinson M J, Johnson R C. DNA looping and the helical repeat in vitro and in vivo: effect of HU protein and enhancer location on Hininvertasome assembly. EMBO J, 1993, 12: 2503-2512
[51]
40 Bustin M. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol CellBiol, 1999, 19: 5237-5246
[52]
41 Gaillard C, Strauss F. High affinity binding of proteins HMG1 and HMG2 to semicatenated DNA loops. BMC Mol Biol, 2000, 1:1471-2199
[53]
42 Zayed H, Izsvak Z, Khare D, et al. The DNA-binding protein HMGB1 is a cellular cofactor of Sleeping Beauty transposition. Nucleic AcidsRes, 2003, 31: 2313-2322??
44 Liu D, Liu Z, Liu S J, et al. Comparative analysis and evolutionary significance of the HMG1 gene in crucian carp, blunt snout bream, andtheir polyploid progeny. Prog Nat Sci, 2009, 19: 1691-1697??
[56]
45 Vigdal T J, Kaufman C D, Izsvak Z, et al. Common physical properties of DNA affecting target site selection of sleeping beauty and otherTc1/mariner transposable elements. J Mol Biol, 2002, 323: 441-452??
[57]
46 Scali C, Nolan T, Sharakhov I, et al. Post-integration behavior of a Minos transposon in the malaria mosquito Anopheles stephensi. MolGenet Genomics, 2007, 278: 575-584
[58]
47 Lippman Z, Gendrel A V, Black M, et al. Role of transposable elements in heterochromatin and epigenetic control. Nature, 2004, 430:471-476??
[59]
48 Miskey C, Izsvak Z, Kawakami K, et al. DNA transposons in vertebrate functional genomics. Cell Mol Life Sci, 2005, 62: 629-641??
[60]
49 Nassif N, Penney J, Pal S Y, et al. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. MolCell Biol, 1994, 14: 1613-1625
[61]
50 Dawson A, Finnegan D J. Excision of the Drosophila mariner transposon Mos1: comparison with bacterial transposition and V (D) Jrecombination. Mol Cell, 2003, 11: 225-235??
[62]
51 Lieber M R, Ma Y M, Pannicke U, et al. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol,2003, 4: 712-720??
[63]
52 Silva J C, Loreto E L, Clark J B. Factors that affect the horizontal transfer of transposable elements. Curr Issues Mol Biol, 2004, 6: 57-71
[64]
53 Plasterk R H. The origin of footprints of the Tc1 transposon of Caenorhabditis elegans. EMBO J, 1991, 10: 1919-1925
[65]
54 Takata M, Sasaki M S, Sonoda E, et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strandbreak repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J, 1998, 17: 5497-5508??
[66]
55 Mao Z Y, Bozzella M, Seluanov A, et al. Comparison of nonhomologous end joining and homologous recombination in human cells. DNARepair(Amst), 2008, 7: 1765-1771
[67]
67 Krasnov A, Koskinen H, Afanasyev S, et al. Transcribed Tc1-like transposons in salmonid fish. BMC Genomics, 2005, 6: 1-10??
[68]
68 Gottgens B, Barton L M, Grafham D, et al. Tdr2, a new zebrafish transposon of the Tc1 family. Gene, 1999, 239: 373-379
[69]
69 Nandi S, Peatman E, Xu P, et al. Repeat structure of the catfish genome: a genomic and transcriptomic assessment of Tc1-like transposonelements in channel catfish (Ictalurus punctatus). Genetica, 2007, 131: 81-90??
[70]
70 Hartl D L, Lozovskaya E R, Nurminsky D I, et al. What restricts the activity of mariner-like transposable elements? Trends Genet, 1997, 13:197-201
[71]
71 Lohe A R, Moriyama E N, Lidholm D A, et al. Horizontal transmission, vertical inactivation, and stochastic loss of mariner-liketransposable elements. Mol Biol Evol, 1995, 12: 62-72
[72]
72 Pocwierz-Kotus A, Burzynski A, Wenne R. Family of Tc1-like elements from fish genomes and horizontal transfer. Gene, 2007, 390:243-251??
[73]
73 Radice A D, Bugaj B, Fitch D H A, et al. Widespread occurrence of the Tc1 transposon family: Tc1-like transposons from teleost fish. MolGen Genet, 1994, 244: 606-612
[74]
74 Jehle J A, Nickel A, Vlak J M, et al. Horizontal escape of the novel Tc1-like lepidopteran transposon TCp3. 2 into Cydia pomonellagranulovirus. J Mol Evol, 1998, 46: 215-224
[75]
75 Gilbert C, Schaack S, Pace J K, et al. A role for host-parasite interactions in the horizontal transfer of transposons across phyla. Nature,2010, 464: 1347-1350??
[76]
76 Fontdevila A. Genetic instability and rapid speciation: are they coupled? Genetica, 1992, 86: 247-258
[77]
77 O''Neill R J W, O''Neill M J, Graves J A M. Undermethylation associated with retroelement activation and chromosome remodelling in aninterspecific mammalian hybrid. Nature, 1998, 393: 68-72??
[78]
78 Subramanian R A, Akala O O, Adejinmi J O, et al. Topi, an IS630/Tc1/mariner-type transposable element in the African malaria mosquito,Anopheles gambiae. Gene, 2008, 423: 63-71
[79]
79 Wessler S R. Phenotypic diversity mediated by the maize transposable elements Ac and Spm. Science, 1988, 242: 399-405??
[80]
80 Ogasawara H, Obata H, Hata Y, et al. Crawler, a novel Tc1/mariner-type transposable element in Aspergillus oryzae transposes under stressconditions. Fungal Genet Biol, 2009, 46: 441.449
[81]
81 Fontdevila A. Hybrid genome evolution by transposition. Cytogenet Genome Res, 2005, 110: 49-55??
[82]
82 Labrador M, Farre M, Utzet F, et al. Interspecific hybridization increases transposition rates of Osvaldo. Mol Biol Evol, 1999, 16: 931
[83]
83 Liu B, Wendel J F. Retrotransposon activation followed by rapid repression in introgressed rice plants. Genome, 2000, 43: 874-880??
[84]
84 Korswagen H C, Durbin R M, Smits M T, et al. Transposon Tc1-derived, sequence-tagged sites in Caenorhabditis elegans as markers forgene mapping. Proc Natl Acad Sci USA, 1996, 93: 14680-14685??
[85]
85 Grzebelus D, G.adysz M, Macko-Podgorni A, et al. Population dynamics of miniature inverted-repeat transposable elements (MITEs) inMedicago truncatula. Gene, 2009, 448: 214-220??
[86]
86 Sasakura Y, Awazu S, Chiba S, et al. Application of Minos, one of the Tc1/mariner superfamily transposable elements, to ascidian embryosas a tool for insertional mutagenesis. Gene, 2003, 308: 11-20
[87]
87 Wadman S A, Clark K J, Hackett P B. Fishing for answers with transposons. Mar Biotechnol, 2005, 7: 135-141??
[88]
88 Dupuy A J, Clark K, Carlson C M, et al. Mammalian germ-line transgenesis by transposition. Proc Natl Acad Sci USA, 2002, 99:4495-4499??
[89]
89 Lu B, Geurts A M, Poirier C, et al. Generation of rat mutants using a coat color-tagged Sleeping Beauty transposon system. Mamm Genome,2007, 18: 338-346??
[90]
90 Horie K, Kuroiwa A, Ikawa M, et al. Efficient chromosomal transposition of a Tc1/mariner-like transposon Sleeping Beauty in mice. ProcNatl Acad Sci USA, 2001, 98: 91919196??
[91]
91 Dupuy A J, Akagi K, Largaespada D A, et al. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system.Nature, 2005, 436: 221-226??
[92]
92 Hackett P B, Largaespada D A, Cooper L J. A transposon and transposase system for human application. Mol Ther, 2010, 18: 674-683??
[93]
93 Keng V W, Villanueva A, Chiang D Y, et al. A conditional transposon-based insertional mutagenesis screen for genes associated withmouse hepatocellular carcinoma. Nat Biotechnol, 2009, 27: 264-274??
[94]
94 Koga A, Suzuki M, Inagaki H, et al. Transposable element in fish. Nature, 1996, 383: 30
[95]
95 Chaudhuri R R, Allen A G, Owen P J, et al. Comprehensive identification of essential Staphylococcus aureus genes usingtransposon-mediated differential hybridisation (TMDH). BMC Genomics, 2009, 10: 1-52??
[96]
96 Bouuaert C C, Chalmers R M. Gene therapy vectors: the prospects and potentials of the cut-and-paste transposons. Genetica, 2010, 138:473-484??
[97]
97 Palazzoli F, Testu F X, Merly F, et al. Transposon tools: worldwide landscape of intellectual property and technological developments.Genetica, 2010, 138: 285-299??