全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

人体足底韧带松解后足部的形态改变及应力分布的实验研究

, PP. 78-82

Keywords: 生物力学,有限元分析,足弓,韧带,应力

Full-Text   Cite this paper   Add to My Lib

Abstract:

较多足部畸形同足弓塌陷或不稳定有关,尤其是足纵弓塌陷.关于跖腱膜松解对足弓高度的影响已有许多研究,但对跖腱膜松解后足部的应力分布尚不清楚.本研究旨在探讨足底韧带损伤后对足弓生物力学的影响.通过CT图像数据建立人体足踝部三维有限元模型,包括足踝部骨骼、主要关节、关键韧带结构及足底软组织.在模型上模拟跖腱膜和其他跖侧韧带松解,分析计算足部骨骼、韧带的力学变化情况.采用不同的韧带松解顺序模拟临床病理状态,了解足弓的应力分布.同时通过尸体标本进行生物力学测试,采用同有限元模型相同的损伤顺序,了解标本足的位移变化和应力分布情况,并同有限元模型计算结果相互验证.结果表明,跖腱膜松解后足弓高度降低,但不会导致整个足弓的塌陷.如果同时损伤跖长韧带、跖短韧带、弹簧韧带,足弓完全塌陷.单纯跖腱膜损伤将导致足底其他韧带结构受力增大及中前足的应力集中,同时在跟骨腱膜止点处峰值应力降低,而中足的应力重新分布.实验发现,跖腱膜松解能够降低其在跟骨止点处的应力,缓解由于应力集中所致的足跟部疼痛,但会导致足弓稳定性降低及应力重新分布所致的足背外侧疼痛.综上,临床上对跖腱膜炎的治疗应首先考虑非手术治疗.

References

[1]  17 Chu T M, Reddy N P, Padovan J. Three-dimensional finite element stress analysis of the polypropylene, ankle-foot orthosis: static analysis. Med Eng Phys, 1995, 17: 372-379??
[2]  18 Patil K M, Braak L H, Huson A. Analysis of stresses in two-dimensional models of normal and neuropathic feet. Med Biol Eng Comput, 1996, 34: 280-284??
[3]  19 Cheung J T, An K N, Zhang M. Consequences of partial and total plantar fascia release: a finite element study. Foot Ankle Int, 2006, 27: 125-132
[4]  20 Tweed J L, Barnes M R, Allen M J, et al. Biomechanical consequences of total plantar fasciotomy: a review of the literature. J Am Podiatr Med Assoc, 2009, 99: 422-430
[5]  1 Sarrafian S K. Functional characteristics of the foot and plantar aponeurosis under tibiotalar loading. Foot Ankle, 1987, 8: 4-18
[6]  2 Murphy G A, Pneumaticos S G, Kamaric E , et al. Biomechanical consequences of sequential plantar fascia release. Foot Ankle Int, 1998, 19: 149-152
[7]  3 Riddle D L, Pulisic M, Sparrow K. Impact of demographic and impairment-related variables on disability associated with plantar fasciitis. Foot Ankle Int, 2004, 25: 311-317
[8]  4 Snider M P, Clancy W G, McBeath A A. Plantar fascia release for chronic plantar fasciitis in runners. Am J Sports Med, 1983, 11: 215-219??
[9]  5 Taniguchi A, Tanaka Y, Takakura Y, et al. Anatomy of the spring ligament. J Bone Joint Surg Am, 2003, 85-A: 2174-2178
[10]  6 Huang C K, Kitaoka H B, An K N, et al. Biomechanical evaluation of longitudinal arch stability. Foot Ankle, 1993, 14: 353-357
[11]  7 Kitaoka H B, Luo Z P, An K N. Analysis of longitudinal arch supports in stabilizing the arch of the foot. Clin Orthop Relat Res,1997, 341: 250-256
[12]  8 Kitaoka H B, Luo Z P, An K N. Reconstruction operations for acquired flatfoot: biomechanical evaluation. Foot Ankle Int, 1998, 19: 203-207
[13]  9 Daly P J, Kitaoka H B, Chao E Y. Plantar fasciotomy for intractable plantar fasciitis: clinical results and biomechanical evaluation. Foot Ankle, 1992, 13: 188-195
[14]  10 Berkelmans W A M, Poort H W, Slooff T J J H. A new method to analysis the mechanical behavior of skeletal parts. ACTA Orthop Scand, 1972, 34: 301-317
[15]  11 Cheng H Y, Lin C L, Chou S W, et al. Nonlinear finite element analysis of the plantar fascia due to the windlass mechanism. Foot Ankle Int, 2008, 29: 845-851??
[16]  12 Arangio G A, Reinert K L, Salathe E P. A biomechanical model of the effect of subtalar arthroereisis on the adult flexible flat foot. Clin Biomech(Bristol, Avon), 2004, 19: 847-852??
[17]  13 Gefen A. Stress analysis of the standing foot following surgical plantar fascia release. J Biomech, 2002, 35: 629-637??
[18]  14 Camacho D L, Ledoux W R, Rohr E S, et al. A three-dimensional, anatomically detailed foot model: a foundation for a finite element simulation and means of quantifying foot-bone position. J Rehabil Res Dev, 2002, 39: 401-410
[19]  15 Jacob S, Patil M K. Three-dimensional foot modeling and analysis of stresses in normal and early stage Hansen''s disease with muscle paralysis. J Rehabil Res Dev, 1999, 36: 252-263
[20]  16 Gefen A, Megido-Ravid M, Itzchak Y, et al. Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications. J Biomech Eng, 2000, 122: 630-639??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133