全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

用定点自旋标记的方法研究天青蛋白疏水区的结构及其与p53蛋白的相互作用

, PP. 30-37

Keywords: 天青蛋白,p53蛋白,自旋标记,蛋白相互作用,抗肿瘤,电子顺磁共振

Full-Text   Cite this paper   Add to My Lib

Abstract:

定点自旋标记技术结合电子顺磁共振(ESR)波谱技术已成为检测蛋白质结构的有力工具.本文使用该方法研究了天青蛋白疏水区的结构特征及其与p53蛋白的相互作用.围绕天青蛋白疏水区构建了6个突变体,并对其进行自旋标记.溶液中标记位点的自旋谱线表明,45及63位自旋探针的运动受到很大限制,而59及65位的标记探针是在一个宽松的环境中,运动比较自由,而49和51位的标记探针则位于疏水结构里的一个相对封闭环境中.同时,对自旋探针与氯化镍可接近性的检测,得到了标记位点附近微环境的极性特征.当天青蛋白与p53相互作用时,标记物自旋谱线的变化证明了标记位点所处的疏水结构直接参与了相互作用.结果描述了溶液中天青蛋白疏水区的结构特征,并提出其疏水区与p53蛋白相互作用的直接证据.细胞毒性的研究表明,位于天青蛋白疏水区的氨基酸与其细胞毒性关系密切.

References

[1]  1 Fialho A M, Stevens F J, Das Gupta T K, et al. Beyond host-pathogen interactions: microbial defense strategy in the host environment. Curr Opin Biotechnol, 2007, 18: 279-286??
[2]  2 Yamada T, Goto M, Punj V, et al. The bacterial redox protein azurin induces apoptosis in J774 macrophages through complex formation and stabilization of the tumor suppressor protein p53. Infect Immun, 2002, 70: 7054-7062??
[3]  3 Yamada T, Goto M, Pun J V, et al. Bacterial redox protein azurin, tumor suppressor protein p53, and regression of cancer. Proc Natl Acad Sci USA, 2002, 99: 14098-14103
[4]  4 Punj V, Bhattacharyya S, Saint-Dic D, et al. Bacterial cupredoxin azurin as an inducer of apoptosis and regression in human breast cancer. Oncogene, 2004, 23: 2367-2378??
[5]  5 Nar H, Messerschmidt A, Van de Kampa R H, et al. Crystal structure of Pseudomonas aeruginosa apo-azurin at 1.85 ? resolution. FEBS Lett, 1992, 306: 119-124
[6]  6 Nar H, Messerschmidt A, Van de Kamp R H, et al. Crystal structure analysis of oxidized Pseudomonas aeruginosa azurin at pH 5.5 and pH 9.0. J Mol Biol, 1991, 221: 765-772
[7]  7 Adman E T, Stenkamp R E, Sieker L C, et al. A crystallographic model for azurin at 3 ? resolution. J Mol Biol, 1978, 123: 35-47??
[8]  8 Nar H, Huber R, Messerschmidt A, et al. Characterization and crystal structure of zinc azurin, a by-product of heterologous expression in Escherichia coli of Pseudomonas aeruginosa copper azurin. Eur J Biochem, 1992, 205: 1123-1129??
[9]  9 Bonander N, Karlsson B G, Vanngard T. Disruption of the disulfide bridge in azurin from Pseudomonas aeruginosa. Biochim Biophys Acta, 1995, 1251: 48-54??
[10]  10 Milardi D, Grasso D M, Verbeet M P, et al. Thermodynamic analysis of the contributions of the copper ion and the disulfide bridge to azurin stability: synergism among multiple depletions. Arch Biochem Biophys, 2003, 414: 121-127??
[11]  11 Van P G, Cigna G, Rolli G, et al. Electron-transfer properties of Pseudomonas aeruginosa Lys44, Glu64 azurin. Eur J Biochem, 1997, 247: 322-331
[12]  12 Yamada T, Fialho A M, Punj V, et al. Internalization of bacterial redox protein azurin in mammalian cells: entry domain and specificity. Cell Microbiol, 2005, 7: 1418-1431??
[13]  13 Taylor B N, Mehta R R, Yamada T, et al. Noncationic peptides obtained from azurin preferentially enter cancer cells. Cancer Res, 2009, 69: 537-546??
[14]  14 Yee K S, Vousden K H. Complicating the complexity of p53. Carcinogenesis, 2005, 26: 1317-1322??
[15]  15 Vousden K H, Lu X. Live or let die: the cell''s response to p53. Nat Rev Cancer, 2002, 2: 594-604??
[16]  16 Ryan K M, Phillips A C, Vousden K H. Regulation and function of the p53 tumor suppressor protein. Curr Opin Cell Biol, 2001, 13: 332-337??
[17]  17 Hofseth L J, Hussain S P, Harris C C. p53: 25 years after its discovery. Trends Pharmacol Sci, 2004, 25: 177-181??
[18]  18 Goto M, Yamada T, Kimbara K, et al. Induction of apoptosis in macrophages by Pseudomonas aeruginosa azurin: tumour suppressor protein p53 and reactive oxygen species, but not redox activity, as critical elements in cytotoxicity. Mol Microbiol, 2003, 47: 549-559??
[19]  19 Punj V, Das Gupta T K, Chakrabarty A M. Bacterial cupredoxin azurin and its interactions with the tumor suppressor protein p53. Biochem Biophys Res Commun, 2003, 312: 109-114??
[20]  20 Apiyo D, Wittung S P. Unique complex between bacterial azurin and tumor suppressor protein p53. Biochem Biophys Res Commun, 2005, 332: 965-968??
[21]  21 Yamada T, Hiraoka Y, Ikehata M, et al. Apoptosis or growth arrest: modulation of tumor suppressor p53''s specificity by bacterial redox protein azurin. Proc Natl Acad Sci USA, 2004, 101: 4770-4775??
[22]  22 Hubbell W L, Cafiso D S, Altenbach C. Identifying conformational changes with site-directed spin labeling. Nat Struct Mol Biol, 2000, 7: 735-739??
[23]  23 Fanucci G E, Cafiso D S. Recent advances and applications of site-directed spin labeling. Curr Opin Struct Biol, 2006, 16: 644-653??
[24]  24 Hubbell W L, Gross A, Langen R, et al. Recent advances in site-directed spin labeling of proteins. Curr Opin Struct Biol, 1998, 8: 649-656??
[25]  25 Colunbus L, Hubbell W L. A new spin on protein dynamics. Trends Biochem Sci, 2002, 27: 288-295??
[26]  26 Hustedt E J, Beth A H. Nitroxide spin-spin interactions: applications to protein structure and dynamics. Annu Rev Biophys Biomol Struct, 1999, 28: 129-153??
[27]  27 Van de Kamp M, Hali F C, Rosato N, et al. Purification and characterization of a non-reconstitutable azurin, obtained by heterologous expression of Pseudomonas aeruginosa azu gene in Escherichia coli. Biochim Biophys Acta, 1990, 1019: 283-292??
[28]  28 Bullock A N, Henckel J, De Decker B S, et al. Thermodynamic stability of wild-type and mutant p53 core domain. Proc Natl Acad Sci USA, 1997, 94: 14338-14342??
[29]  29 Bulaj G, Kortemme T, Goldenberg D P. Ionization-reactivity relationships for cysteine thiols in polypeptides. Biochemistry, 1998, 37: 8965-8972??
[30]  30 Dunham T D, Farrens D L. Conformational changes in rhodopsin: movement of helix f detected by site-specific chemical labeling and fluorescence spectroscopy. J Biol Chem, 1999, 274: 1683-1690??
[31]  31 Crane J M, Mao C, Lilly A A, et al. Mapping of the docking of Sec A onto the chaperone Sec B by site-directed spin labeling: insight into the mechanism of ligand transfer during protein export. J Mol Biol, 2005, 353: 295-307??
[32]  32 Berliner L J. Spin labeling. Theory and Applications, 2nd ed. New York: Academic Press, 1979
[33]  33 Lai C S, Froncisz W, Hopwood L E. An evaluation of paramagnetic broadening agents for spin probe studies of intact mammalian cells. Biophys J, 1987, 52: 625-628??
[34]  34 Zhao B L, Li X J, He R G, et al. ESR studies on oxygen consumption during the respiratory burst of human polymorphonuclear leukocytes. Cell Biol Int, 1989, 13: 317-323??
[35]  35 Rizzuti B, Sportelli L, Guzzi R. Evidence of reduced flexibility in disulfide bridge-depleted azurin: a molecular dynamics simulation study. Biophys Chem, 2001, 94: 107-120??
[36]  36 Miller R. Simultaneous Statistical Inference. New York: Springer, 1981
[37]  37 Taranta M, Bizzarri A R, Cannistraro S. Probing the interaction between p53 and the bacterial protein azurin by single-molecule force spectroscopy. J Mol Recognit, 2008, 21: 63?70??
[38]  38 De Grandis V, Bizzarri A R, Cannistraro S. Docking study and free energy simulation of the complex between DNA-binding domain and azurin. J Mol Recognit, 2007, 20: 215-226??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133