全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于18SrDNA的metabarcoading技术分析土壤小型动物多样性3种方法的比较

, PP. 993-1001

Keywords: 罗氏454测序系统,DNA条形码,高通量测序,土壤动物,metabarcoding,18SrDNA

Full-Text   Cite this paper   Add to My Lib

Abstract:

生态和环境管理方面的很多基本问题都需要涉及土壤及腐殖质小型动物多样性的特征描述.当前利用高通量测序技术获得条形码基因扩增子序列的方法(‘metabarcoding’)在生物多样性调查方面提供了高效有力的方法.然而,这一技术的广泛应用面临很大阻碍,即需要从大量原始序列数据中通过生物信息学方法处理获得很多候选基因.于是,我们比较了3个针对从固体基质中获得的18SrDNAmetabarcode数据的信息学处理方法:(ⅰ)USEARCH/CROP,(ⅱ)Denoiser/UCLUST以及(ⅲ)OCTUPUS.令人满意的是,这3个信息学处理方法得到了相似且与环境样本中已知特征分类单元高度相关的群落组成.然而,OCTUPUS由于过高的序列噪音出现了过度估计系统发育多样性的问题.因此,推荐USEARCH/CROP或Denoiser/UCLUST方法,二者均可在QIIME环境下运行.

References

[1]  3 Reeder J, Knight R. Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. Nat Methods, 2010, 7: 668-669
[2]  4 Fonseca V G, Carvalho G R, Sung W, et al. Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nat Commun, 2010, 1: 98??
[3]  6 Munch K, Boomsma W, Huelsenbeck J, et al. Statistical assignment of DNA sequences using Bayesian phylogenetics. Syst Biol, 2008, 57: 750-757??
[4]  7 Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 2010b, 7: 335-336
[5]  8 Hamilton H C, Strickland M S, Wickings K, et al. Surveying soil faunal communities using a direct molecular approach. Soil Biol Biochem, 2009, 41: 1311-1314??
[6]  9 Wu T, Ayres E, Bardgett R D, et al. Molecular study of worldwide distribution and diversity of soil animals. Proc Natl Acad Sci USA, 2011, 108: 17720-17725??
[7]  10 Bienert F, De Danieli S, Miquel C, et al. Tracking earthworm communities from soil DNA. Mol Ecol, 2012, 21: 2017-2030??
[8]  5 Pruesse E, Quast C, Knittel K, et al. 2007 SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res, 2007, 35: 7188-7196??
[9]  11 Epp L S, Boessenkool S, Bellemain E P, et al. New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Mol Ecol, 2012, 21: 1821-1833??
[10]  12 Porazinska D L, Giblin-Davis R M, Esquivel A. Ecometagenetics confirms high tropical rainforest nematode diversity. Mol Ecol, 2010a, 19: 5521-5530
[11]  13 Porazinska D L, Giblin-Davis R M, Faller L, et al. Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Mol Ecol Resources, 2009, 9: 1439-1450??
[12]  14 Porazinska D L, Sung W, Giblin-Davis R M, et al. Reproducibility of read numbers in high-throughput sequencing analysis of nematode community composition and structure. Mol Ecol Resources, 2010b, 10: 666-676
[13]  15 Taberlet P, Coissac E, Hajibabaei M, et al. Environmental DNA. Mol Ecol, 2012, 21: 1789-1793??
[14]  16 Yoccoz N G, Br?then K A, Gielly L, et al. DNA from soil mirrors plant taxonomic and growth form diversity. Mol Ecol, 2012, 21: 3647-3655??
[15]  17 Koskinen J P, Holm L. SANS: high-throughput retrieval of protein sequences allowing 50% mismatches. Bioinformatics, 2012, 28: 438-443??
[16]  18 Bik H M, Porazinska D L, Creer S, et al. Sequencing our way towardsunderstanding global eukaryoticbiodiversity. Cell, 2012, 27: 4
[17]  19 Smith B C, McAndrew T, Chen Z, et al. The cervical microbiome over 7 years and a comparison of methodologies for its characterization. PloS one, 2012, 7: 7
[18]  20 Lenz T, Becker S. Simple approach to reduce PCR artefact formation leads to reliable genotyping of MHC and other highly polymorphic loci—implications for evolutionary analysis. Gene, 2008, 427: 117-123??
[19]  21 Coissac E, Riaz T, Puillandre N. Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol Ecol, 2012, 21: 1834-1847??
[20]  22 Taberlet P, Prud’Homme S M, Campione E, et al. Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies. Mol Ecol, 2012, 21: 1816-1820??
[21]  23 Yoccoz N G, Br?then K A, Gielly L, et al. DNA from soil mirrors plant taxonomic and growth form diversity. Mol Ecol, 2012, 21: 3647-3655??
[22]  24 Creer S, Fonseca V G, Porazinska D L, et al. Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. Mol Ecol, 2010, 19: 4-20??
[23]  25 Somerfield P J, Warwick R M, Moens T. Meiofauna techniques. In: Methods for the Study of Marine Benthos. Oxford: Blackwell Science Ltd., 2005. 229-272
[24]  26 Folmer O, Black M, Hoeh W, et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Marine Biol Biotechnol, 1994, 3: 294-299
[25]  27 Edgar R C, Haas B J, Clemente J C, et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 2011, 27: 2194-2200??
[26]  28 Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 2006, 22: 1658-1659??
[27]  29 Yu D W, Ji Y Q, Emerson B C, et al. Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol Evol, 2012, 3: 613-623??
[28]  30 Haas B J, Gevers D, Earl A M, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res, 2011, 21: 494-504??
[29]  31 Chou H H, Holmes M H. DNA sequence quality trimming and vector removal. Bioinformatics, 2001, 17: 1093-1104??
[30]  32 Edgar R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res, 2004, 32: 1792-1797??
[31]  33 Amend A S, Seifert K A, Bruns T D. Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol, 2010, 19: 5555-5565
[32]  34 Gotelli N J, Colwell R K. Estimating species richness. In: Meagurran A E, McGill B J, eds. Biological Diversity: Frontiers in Measurement and Assessment. Oxford: Oxford University Press, 2011. 39-54
[33]  35 Nipperess D. Phylocurve: an R function for generating a rarefaction curve of phylogenetic diversity. http://davidnipperess.blogspot.com/ 2012/07/phylocurve-r-function-for-generating.html, 2011
[34]  36 R Development Core Team. R: a language and environment for statistical computing. In: R Foundation for Statistical Computing, Vienna, Austria, 2012
[35]  37 Kearse M, Moir R, Wioson A, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinf Appl Note, 2012, 28: 1647-1649
[36]  38 Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol, 2003, 52: 696-704??
[37]  39 Yang X D, Sha L Q. Species composition and diversity of soil mesofauna in the ‘Holy Hills’ fragmentary tropical rain forest of Xishuangbanna, China. Chin J Appl Ecol, 2010, 12: 261-265
[38]  41 Faith D P, Baker A M. Phylogenetic diversity (PD) and biodiversity conservation: some bioinformatics challenges. Evol Bioinf Online, 2006, 2: 121-128
[39]  42 Matsen F A, Kodner R B, Armbrust E V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics, 2010, 11: 538??
[40]  40 Caporaso J G, Bittinger K, Bushman F D, et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics, 2010a, 26: 266-267
[41]  1 Edgar R C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 2010, 26: 2460-2461??
[42]  2 Hao X, Jiang R, Chen T. Clustering 16S rRNA for OTU prediction: a method of unsupervised Bayesian clustering. Bioinformatics, 2011, 27: 611-618??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133