19 Nemmar A, Hoet P H M, Vanqtdckeuborne B, et al. Passage of inhaled particles into the blood circulation in humans. Circulation, 2002, 105: 411-414??
[2]
20 Oberd?rster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Persp, 2004, 112: 1058-1062
[3]
21 Oberd?rster G, Sharp Z, Atudorei V, et al. Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicol, 2004, 16: 437-445??
[4]
22 Fischer H C, Liu L, Pang K S, et al. Pharmacokinetics of nanoscale quantum dots: in vivo distribution, sequestration, and clearance in the rat. Adv Funct Mater, 2006, 16: 1299-1305??
[5]
1 Gao X H, Cui Y Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol, 2004, 22: 969-976??
[6]
2 Serpone N, Emeline A V. Modelling heterogeneous photocatalysis by metal-oxide nanostructured semiconductor and insulator materials: factors that affect the activity and selectivity of photocatalysts. Res Chem Intermed, 2005, 31: 391-432??
[7]
3 Chen X, Schluesener H J. Nanosliver: a nanoproduct in medical application. Toxicol Lett, 2008, 176: 1-12??
[8]
4 Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health, 2006, 114: 165-170
[9]
5 Michalet X, Pinaud F F, Bentolila L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307: 538-544??
[10]
6 Cho S J, Maysinger D, Jain M, et al. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir, 2007, 23: 1974-1980??
[11]
7 Hoshino A, Fujioka K, Oku T, et al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett, 2004, 4: 2163-2169??
[12]
8 Kirchner C, Liedl T, Kudera S, et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett, 2005, 5: 331-338 ??
[13]
9 Leshuai W Z, William W Y, Vicki L C, et al. Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Toxicol Appl Pharmacol, 2008, 228: 200-211??
[14]
10 Luke J M, Gunter O, Alice P P, et al. In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. Nano Lett, 2008, 8: 2779-2787??
[15]
11 Upadhyay P. Enhanced transdermal-immunization with diptheria-toxoid using local hyperthermia. Vaccine, 2006, 24: 5593-5598??
[16]
12 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 1983, 65: 55-63??
[17]
13 Chu M Q, Wu Q, Wang J, et al. In vitro and in vivo transdermal delivery capacity of quantum dots through mouse skin. Nanotechnology, 2007, 18: 455103-455108 ??
[18]
14 Alvarez-Roman R, Naik A, Kalia Y N, et al. Skin penetration and distribution of polymeric nanoparticles. J Contr Release, 2004, 99: 53-62??
[19]
15 Kohli A K, Alpar H O. Potential use of nanoparticles for transcutaneous vaccine delivery: effect of particle size and charge. Int J Pharm, 2004, 275: 13-17??
[20]
16 Chen Z, Chen H, Meng H, et al. Bio-distribution and metabolic paths of silica coated CdSeS quantum dots. Toxicol Appl Pharmacol, 2008, 230: 364-371??
[21]
17 Lademann J, Weigmann H, Rickmeyer C, et al. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol, 1999, 12: 247-256??
[22]
18 Baroli B, Ennas M G, Loffredo F, et al. Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol, 2007, 127: 1701-1712