全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

选择性培养条件下细菌抗性突变体发生机制研究方法的探讨——对Luria-Delbrück实验结果的不确定性分析

, PP. 809-824

Keywords: 细菌,突变,随机过程,Poisson分布,统计检验,聚集分布

Full-Text   Cite this paper   Add to My Lib

Abstract:

Luria-Delbrück的推断被公认为遗传学上开创性的经典研究,并被沿用于抗药性产生机理的分析.近年来,适应性突变现象的发现,引发了对此难题的再次争议.系列微生物学观察表明,在不同浓度药物存在的条件下,耐药/抗药性细胞的发生和增值都是依赖于时间的过程函数,它并不符合“既不依赖于存在量,又独立于时间过程”的Poisson分布的限定条件.同时,由于细菌细胞分裂后并不立即完全分离开,而是呈一定的聚集状态存在,因此,在药物平板上出现的菌落,是由来源数目不等的耐/抗性菌细胞历经不同分裂次数增殖过程所形成,以其作为等值进行统计分析,必然会失真.本文对Luria-Delbrück波动试验中13组310个数据的重新分析表明,它们大都存在高端异常值,这正是上述2类时间变量不同步变化所导致的结果,所以其均值不能作为期望值的无偏估计.同时,2类抽样方式得到的均值/方差比值也不具备等价可比性.应用多种统计分析方法对Luria-Delbrück数据的分析表明,它不呈Poisson分布,而是呈聚集分布.综合上述分析,Luria-Delbrück波动试验所呈现的相对于Poisson分布的差异,有更大可能性是实验设计本身的系统偏差,而非一般所期望的用以区分细菌突变是否受环境压力所诱导的主要依据.这表明Luria-Delbrück由于对抗性突变体的发生和增殖规律认识不足而错用了统计分析方法,从而导致了统计推断的失真.本文对此历史性误解的阐明,将推动对细菌抗药性发生机理研究的进展.

References

[1]  35 张怀强, 刘玉庆, 刘波, 等. 分批培养条件下细菌群体生长阶段的区分及生长参数的确定. 中国科学C辑: 生命科学, 2005, 35: 1-11
[2]  36 刘玉庆, 张怀强, 沈建忠, 等. 大肠杆菌群体的生理异质性对药敏实验的影响. 中国科学C辑: 生命科学, 2007, 37: 524-529
[3]  37 张怀强, 卢丽丽, 阎雪岚, 等. 细菌群体异质性对生长动态过程的影响及其表征. 中国科学C辑: 生命科学. 2007, 37: 246-256
[4]  38 刘波, 金建玲, 张辉, 等. Ames测试不确定性分析. 应用与环境生物学报, 2007, 13: 726-730
[5]  39 金建玲, 杨维强, 张辉, 等. 突变率计算中细菌群体生长不同步系数的修正. 微生物学通报, 2009, 36: 0446-0452
[6]  40 张怀强, 赵越, 何秀丽, 等. 构建大肠杆菌药敏实验新方法的探索. 中国科学C辑: 生命科学, 2010, 40: 75-85
[7]  41 刘玉庆, 张怀强, 胡明, 等. 药敏实验方法的局限性及改进的建议. 山东大学学报(医学版), 2011, 49: 124-132
[8]  42 金建玲, 张为灿, 李瑜, 等. 大豆过氧化物酶-过氧化氢-碘化钾体系的杀菌作用. 微生物学报, 2011, 51: 393-401
[9]  43 Zhang Z, Huang J, Wang Z F, et al. Impact of Indels on the Flanking Regions in Structural Domains. Mol Biol Evol, 2011, 28: 291-301??
[10]  44 Bliss C I, Fisher R A. Fitting the negative distribution to biological data. Biometrics, 1953, 9: 176-200??
[11]  45 杨纪柯, 乔翔林, 陈霖. 生物数学概率. 北京: 科学出版社, 1982. 392-399
[12]  46 马育华. 实验统计. 北京: 农业出版社, 1982. 446
[13]  47 李惕碚. 实验的数学处理. 北京: 科学出版社, 1983
[14]  48 范金城, 梅长林. 数据分析. 北京: 科学出版社, 2002
[15]  49 方开泰, 许建伦. 统计分布. 北京: 科学出版社, 1987. 289
[16]  50 唐启义, 王磊, 胡国义. 回归模型分析中卡方(X-2)检验的误用. 昆虫知识, 1997, 34: 353-354
[17]  51 Gerry P Q, Keough M J. 生物实验设计与数据分析. 蒋志刚, 李春旺, 曾岩, 译. 北京: 高等教育出版社, 2003
[18]  52 Grubbs F E. Sample criteria for testing out typing observations. Ann Math statistics, 1950, 21: 27-58??
[19]  53 Dixon W J. Analysis of extreme values. Ann Math Statistics, 1950, 21: 488-506??
[20]  54 刘延令, 丁道茅. 几种离散分布的判定问题. 中国卫生统计, 1989, 6: 14-17
[21]  55 范金城, 梅长林. 数据分析. 北京: 科学出版社, 2002. 12-17
[22]  56 吕忠, 王敖全. 研究适应突变的一个新的实验系统. 中国科学C辑: 生命科学, 2000, 30: 547-553
[23]  57 Miller J H. Spontaneous mutation in bacteria: Insights into pathways and repair. Annu Rev Microbiol, 1996, 50: 625-643??
[24]  58 Lewis R W, Taber A.S. Bacterial resistance to antimicrobials. 2nd ed. New York: CRC Press/Taylor and Francis Group, 2008
[25]  59 金建玲, 高培基. 选择条件下细菌突变的研究. 自然, 2002, 27: 320-323
[26]  60 Gregory J M, Reuben S H, Petter L L, et al. The SOS response regulates adaptive mutation. Proc Natl Acad Sci USA, 2000, 97: 6646-6651 ??
[27]  61 Chiang Chin-Long, Poisson process: In An Intruduction to Stochastic Processes and their Applications. New York: Robert E. Krieger Publishing Co., 1980. 184-186
[28]  62 陈希孺. 机会的数学. 北京: 清华大学出版社, 2000
[29]  63 Jin J L, Gao P J, Mao Y M. Occurrence of leu+ revertants under starvation cultures in Escherichia coli is growth-dependent.BMC Genetics, 2002, 3: 6
[30]  1 薛京伦. 表观遗传学. 上海: 上海科技出版社, 2006
[31]  2 Luria S E, Delbrück M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics, 1943, 28: 491-511
[32]  3 Newcombe H B. Origin of bacterial variants. Nature, 1949, 164: 150-151??
[33]  4 Lederberg J, Lenderberg E M. Replica plating and indirect selection of bacteria mutants. J Bacteriol, 1952, 63: 399-405
[34]  5 Demerce M. Origin of bacterial resistance to antibiotics. J Bacteriol, 1948, 56: 63-74
[35]  6 Cairns J, Overbaugh J, Miller S. The origin of mutants. Nature, 1988, 335: 142-145??
[36]  7 Foster P L. Are adaptive mutations due to a decline in mismatch repair? The evidence is lacking. Mutat Res, 1999, 436: 179-184??
[37]  8 Crump K S, Hoel D G. Mathematical models for estimating mutation rates in cell populations. Biometrika, 1974, 61: 237-237??
[38]  9 刘垂玗. 微生物突变率的估计. 中国科学B, 1983, 7: 625-633
[39]  10 Tlsty T D, Margolin B H, Lum K. Differences in the rates of gene amplification in nontumorigenic and tumorigenic cell lines as measured by Luria-Delbrück fluctuation analysis. Proc Natl Acad Sci USA, 1989, 86: 9441-9445??
[40]  11 Sahotra S. Haldane’s solution of the Luria-Delbriick distribution. Genetics, 1991, 1217: 257-261
[41]  12 Jones M E, Thomas S M, Rogers A. Luria-Delbrück fluctuation experiments: Design and analysis. Genetics, 1994, 136: 1209-1216
[42]  13 Stewart F M. Fluctuation tests: How reliable are the estimates of mutation rates? Genetics, 1994, 137: 1139-1146
[43]  14 Rosche W A, Foster P L. Determing mutation rates in bacterial population. Methods, 2000, 20: 4-17??
[44]  15 Kepler T B. Improved inference of mutation rates: I. an integral representation for the Luria-Delbrück distribution. Theor Popul Biol, 2001, 59: 41-48??
[45]  16 Angerer W P. An explicit representation of the Luria-Delbrück distribution. Math Biol, 2001, 42: 145-174??
[46]  17 Zheng Q. Statistical and algorithmic methods for fluctuation analysis with SALVADOR as an implementation. Math Biol, 2002, 176: 237-252
[47]  18 Zheng Q. New algorithms for Luria-Delbrück fluctuation analysis. Math Biol, 2005, 196: 198-214
[48]  19 Zheng Q. On Haldane’s formulation of Luria and Delbrück’s mutational model. Math Biosci, 2007, 209: 237-252
[49]  20 Dewanji A, Luebeck E G, Moolgavkar S H. A generalized Luria-Delbrück model. Math Biosci, 2005, 197: 140-152??
[50]  21 Zheng Q. On Haldane’s formulation of Luria and Delbrück’s mutation model. Math Biosci, 2007, 209: 500-513??
[51]  22 Hall B M, Ma C X, Liang P, et al. Fluctuation anaLysis calculator: A web tool for the determination of mutation rate using Luria-Delbrück fluctuation analysis. Bioinformatics, 2009, 25: 1564-1565??
[52]  23 Wax R G, Lewis K, Salyers A A, et al. Bacterial Resistance to Antimicrobials. 2nd ed. New York: CRC Press, 2007
[53]  24 Mortelmans K, Zeiger E. The Ames Salmonella/microsome mutagenicity assay. Mutat Res, 2000, 455: 29-60 ??
[54]  25 刘实. 液体培养基内跟踪细菌生长和一个新的细菌生命模式. 中国科学C辑: 生命科学, 1999, 29: 571-579
[55]  26 Ferenci T. Growth of bacterial cultures 50 years on: Towards an uncertainty principle instead of constants in bacterial growth kinetics. Res Microbiol, 1999, 150: 431-443??
[56]  27 Thattai M, Oudenaarden A. Stochastic gene expression in fluctuation experiments. Genetics, 2004, 167: 523-530??
[57]  28 Waldor M K, Friedman D L, Adhya S L. Phages: Their Role in Bacterial Phathogenesis and Biotechnology. Washington: ASM press, 2005
[58]  29 Mantzaris N V. Stochastic and deterministic simulations of heterogeneous cell population dynamics. J Theor Biol, 2006, 241: 690-706??
[59]  30 Wax R G, Levis K, Salyers A A, et al. Bacterial Resistance to Antibiotics. 2nd ed. New York: CRC press, 2008
[60]  31 Kohanski M A, Owyer D J, Hayeto B, et al. A common mechanism of cellular death induced by bactericidal antibiotics. Cell, 2007,130: 797-810??
[61]  32 Trindade S, Perfiito L, Gordo I. Rate and effects of spontaneous mutations that affect fitness in mutator E. coli. Phil Trans R Soc B, 2010, 305: 1177-1186
[62]  33 陈玲玲, 彭贵子, 张伟丽, 等. 突变在基因组进化中的意义. 遗传, 2006, 28: 631-638
[63]  34 Liu Y Q, Zhang Y Z, Sun C Y, et al. A novel approach to estimate in vitro antibacterial potency of Chinese medicine using a concentration-killing curve method. Am J Chin Med, 2005, 33: 671-682??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133