全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

miR1444a参与毛果杨对锌胁迫的响应

DOI: 10.1360/052012-311, PP. 850-860

Keywords: 毛果杨,微小RNA,miR1444a,多酚氧化酶,锌胁迫

Full-Text   Cite this paper   Add to My Lib

Abstract:

miR1444a是杨树特异的miR1444家族中的一员,在植物对干旱、机械和铜等环境胁迫的响应中发挥重要作用.本研究通过RACE技术克隆得到毛果杨MIR1444a基因.该基因全长691bp,含单一外显子.生物信息学分析发现其启动子区存在大量胁迫响应相关的顺式作用元件,其中以前报道的5个与铜胁迫相关的CuRE元件中有4个位于转录本的5′末端,1个在转录起始点上游.qRT-PCR分析miR1444a成熟体及其靶基因PtPPO3和PtPPO6的表达与锌胁迫的关系,发现随着Zn2+浓度的增加,毛果杨根、茎、叶中miR1444a的表达均呈上升趋势,而PtPPO3和PtPPO6的表达均下降,说明miR1444a受Zn2+调控,参与毛果杨对锌胁迫的响应.

References

[1]  1 姚燕, 于惠敏, 孙倩. 杨树基因工程的研究进展. 山东林业科技, 2006, 3: 82-84
[2]  2 赵华燕, 卢善发, 晁瑞堂. 杨树的组织培养及其基因工程研究. 植物学通报, 2001, 18: 169-176
[3]  3 胥猛, 谢雯凡, 潘惠新, 等. 杨树ARGONAUTE基因的克隆及序列分析. 林业科学, 2011, 47: 46-51
[4]  4 林元震, 张志毅, 林善枝, 等. 运用基因组和EST数据库进行电子克隆分离杨树功能基因的策略. 分子植物育种, 2007, 5: 583-587
[5]  7 Jones-Rhoades M W, Bartel D P, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol, 2006, 57: 19-53??
[6]  8 Chen X. Small RNAs in development--insights from plants. Curr Opin Genet Dev, 2012, 22: 361-367??
[7]  9 Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell, 2009, 136: 669-687??
[8]  10 Bartel D P. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136: 215-233??
[9]  11 Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet, 2012, 37: 766-770
[10]  12 Sunkar R. MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol, 2010, 21: 805-811??
[11]  13 Lu S, Sun Y H, Chiang V L. Stress-responsive microRNAs in Populus. Plant J, 2008, 55: 131-151??
[12]  14 Tran L T, Constabel P. The polyphenol oxidase gene family in poplar: phylogeny, differential expression and identification of a novel, vacuolar isoform. Planta, 2011, 234: 799-813??
[13]  15 Lu S, Yang C, Chiang V L. Conservation and diversity of microRNA-associated copper-regulatory networks in Populus trichocarpa. J Integr Plant Biol, 2011, 53: 879-891??
[14]  16 Ravet K, Danford F L, Dihle A, et al. Spatiotemporal analysis of copper homeostasis in Populus trichocarpa reveals an integrated molecular remodeling for a preferential allocation of copper to plastocyanin in the chloroplasts of developing leaves. Plant Physiol, 2011, 157: 1300-1312??
[15]  17 Tuskan G A, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr & Gray). Science, 2006, 313: 1596-1604??
[16]  18 Higo K, Ugawa Y, Iwamoto M, et al. Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res, 1999, 27: 297-300??
[17]  19 McCown B H, Lloyd G. Woody plant medium (WPM)—a mineral nutrient formulation for microculture for woody plant species. Hort Sci, 1981, 16: 453
[18]  5 李少峰, 苏晓华, 张冰玉. 林木基因克隆研究进展. 植物学报, 2011, 46: 79-107
[19]  6 Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116: 281-297??
[20]  20 Shi R, Chiang V L. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques, 2005, 39: 519-525 ??
[21]  21 Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res, 2003, 31: 3406-3415??
[22]  22 Quinn J M, Barraco P, Eriksson M, et al. Coordinate copper- and oxygen-responsive Cyc6 and Cpx1 expression in Chlamydomonas is mediated by the same element. J Biol Chem, 2000, 275: 6080-6089??
[23]  23 Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63-78??
[24]  40 Lu S, Sun Y H, Shi R, et al. Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell, 2005, 17: 2186-2203??
[25]  41 Lu S, Sun Y H, Amerson H, et al. MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J, 2007, 51: 1077-1098??
[26]  42 Baxter I R, Vitek O, Lahner B, et al. The leaf ionome as a multivariable system to detect a plant’s physiological status. Proc Natl Acad Sci USA, 2008, 105: 12081-12086??
[27]  43 Sinclair S A, Ute Kr?mer. The zinc homeostasis network of land plants. Biochim Biophy Acta, 2012, 1823: 1553-1567??
[28]  44 Sommer F, Kropat J, Malasarn D, et al. The CRR1 nutritional copper sensor in Chlamydonas contains two distinct metal-responsive domains. Plant Cell, 2010, 22: 4098-4113??
[29]  24 Kim H J, Kim Y K, Park J Y, et al. Light signalling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant J, 2003, 29: 693-704
[30]  25 Svensson J T, Crosatti C, Campoli C, et al. Transcriptome analysis of cold acclimation in barley albina and xantha mutants. Plant Physiol, 2006, 141: 257-270??
[31]  26 Lam E, Chua N H. ASF-2: a factor that binds to the cauliflower mosaic virus 35S promoter and a conserved GATA motif in cab promoters. Plant Cell, 1989, 1: 1147-1156
[32]  27 Terzaghi W B, Cashmore A R. Light-regulated transcription. Annu Rev Plant Physiol Plant Mol Biol, 1995, 46: 445-474 ??
[33]  28 Nakamura M, Tsunoda T, Obokata J. Photosynthesis nuclear genes generally lack TATA-boxes: a tobacco photosystem I gene responds to light through an initiater. Plant J, 2002, 29: 1-10 ??
[34]  29 Hudson M E, Quail P H. Identification of promoter motifs involved in the network of phytochrome A-regulated gene expression by combined analysis of genomic sequence and microarray data. Plant Physiol, 2003, 133: 1605-1616??
[35]  30 Skinner J S, Zitzewitz J, Szücs P, et al. Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol, 2005, 59: 533-551??
[36]  31 Ogawa M, Hanada A, Yamauchi Y, et al. Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell, 2003, 15: 1591-1604??
[37]  32 Gubler F, Kalla R, Roberts J K, et al. Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pl alpha-amylase gene promoter. Plant Cell, 1995, 7: 1879-1891
[38]  33 Zhang Z L, Xie Z, Zou X L, et al. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol, 2004, 134: 1500-1513??
[39]  34 Mohanty B, Krishnan S P, Swarup S, et al. Detection and preliminary analysis of motifs in promoters of anaerobically induced genes of different plant species. Ann Bot (Lond), 2005, 96: 669-681??
[40]  35 Yu D Q, Chen C H, Chen Z X. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell, 2001, 13: 1527-1540
[41]  36 Nishiuchi T, Shinshi H, Suzuki K. Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: Possible involvement of NtWRKYs and autorepression. J Biol Chem, 2004, 279: 55355-55361??
[42]  37 Kropat J, Tottey S, Birkenbihl R P, et al. A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element. Proc Natl Acad Sci USA, 2005, 102: 18730-18735??
[43]  38 Mendoza-Soto A B, Sánchez F, Hernández G. MicroRNAs as regulators in plant metal toxicity response. Front Plant Sci, 2012, 3: 105
[44]  39 路景陵. 植物营养学(上册). 北京: 中国农业大学出版社, 2003

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133