全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

丛枝菌根真菌氮吸收、运转和传递机理的总述

, PP. 355-364

Keywords: AM真菌,精氨酸,氮代谢,氮运转,共生

Full-Text   Cite this paper   Add to My Lib

Abstract:

丛枝菌根(AM)真菌与80%以上的陆地植物形成共生关系,可以与土壤中寄主植物根或者离体根器官组织共生.AM真菌的根外菌丝(ERM)可以吸收各种形态的氮源,然后传递给寄主植物根部.然而,关于AM真菌吸收、同化各种氮源,并且传递给寄主植物的机制尚未清楚,这导致了缺乏描述AM真菌菌丝内氮移动的总体模型.最近用15N标记实验、关键酶活性检测和基因表达等研究了AM真菌与RiT-DNA转基因胡萝卜根共生系统中N同化、运转和传递的总体途径.本文根据最近大量的实验进展综述了AM真菌吸收、同化、运转和传递给寄主植物的N形态及其机制.并且讨论了萌发孢子对氮和碳源利用的形态,以及他们对氨基酸代谢的影响.最后绘出了AM真菌N代谢的总体途径模型.

References

[1]  1 Smith S E, Read D J, eds. Mycorrhizal Symbiosis. London, UK: Academic Press, 2008.
[2]  2 Abdel Latef A A H. Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.). Mycorrhiza, 2011, 21: 495-503??
[3]  3 Piao H C, Liu C Q. Variations in nitrogen, zinc, and sugar concentrations in Chinese fir seedlings grown on shrubland and plowed soils in response to arbuscular mycorrhizae-mediated process. Biol Fertil Soils, 2011, 47: 721-727??
[4]  4 Cheng X M, Baumgartner K. Arbuscular mycorrhizal fungi-mediated nitrogen transfer from vineyard cover crops to grapevines. Biol Fert Soils, 2004, 40: 406-412??
[5]  5 Meding S M, Zasoski R J. Hyphal-mediated transfer of nitrate, arsenic, cesium, rubidium, and strontium between arbuscular mycorrhizal forbs and grasses from a California oak woodland. Soil Biol Biochem, 2008, 40: 126-134??
[6]  6 McFarland J W, Ruess R W, Kielland K, et al. Cross-ecosystem comparisons of in situ plant uptake of amino acid-N and NH4 +. Ecosystems,2010, 13:177-193??
[7]  7 Tobar R, Azcón R, Barea J M. Improved nitrogen uptake and transport from 15N labelled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytol, 1994, 126: 119-122??
[8]  8 Bago B, Vierheilig H, Piché Y, Azcón-Aguilar C. Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture. New Phytol, 1996, 133: 273-280??
[9]  9 Johansen A, Finlay R D, Olsson P A. Nitrogen metabolism of the external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol, 1996, 133: 705-712??
[10]  10 Hawkins H J, Johansen A, George E. Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil,2000, 226: 275-285??
[11]  11 Toussaint J P, St-Arnaud M, Charest C. Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Can J Microbiol, 2004, 50: 251-260??
[12]  12 Breuninger M, Trujillo C G, Serrano E, et al. Different nitrogen sources modulate activity but not expression of glutamine synthetase in arbuscular mycorrhizal fungi. Fungal Genet Biol, 2004, 41: 542-552??
[13]  13 Azcón R, Ruiz-Lozano J M, Rodriguez R. Differential contribution of arbuscular mycorrhizal fungi to plant nitrate uptake of 15N under increasing N supply to the soil. Can J Bot, 2001, 79: 1175-1180??
[14]  14 Shachar-Hill Y, Rolin D B, Pfeffer P E, et al. Uptake and transfer of N to the host by an arbuscular mycorrhizal (AM) fungus. Plant Physiol,1997, 114(Suppl): 39, Abstr. 106
[15]  15 Vazquez M M, Barea J M, Azcon R. Impact of soil nitrogen concentration on Glomus spp.—Sinorhizobium interactions as affecting growth, nitrate reductase activity and protein content of Medicago sativa. Biol Fert Soils, 2001, 34: 57-63??
[16]  16 Hodge A, Campbell C D, Fitter A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 2001, 413: 297-299??
[17]  17 Rolin D, Pfeffer P E, Douds D D, et al. Arbuscular mycorrhizal symbiosis and phosphorus nutrition: Effects on amino acid production and turnover in leek. Symbiosis, 2001, 30: 1-14
[18]  18 Rasmussen N, Lloyd D C, Ratcliffe R G, et al. 31P NMR for the study of P metabolism and translocation in arbuscular mycorrhizal fungi. Plant Soil, 2000, 226: 245-253??
[19]  19 Bago B, Pfeffer P E, Shachar-Hill Y. Carbon transport and metabolism in arbuscular mycorrhiza. Plant Physiol, 2000, 124: 949-957??
[20]  20 Landis F C, Fraser L H. A new model of carbon and phosphorus transfers in arbuscular mycorrhizas. New Phytol, 2007, 177: 466-479
[21]  21 Smith S E, Gianinazzi-Pearson V, Koide R, et al. Nutrient transport in mycorrhizas: structure, physiology, and consequences for efficiency of the symbiosis. Plant Soil, 1994, 159: 103-113
[22]  22 Kaldorf M M, Schmelzer E, Bothe H. Expression of maize and fungal nitrate reductase in arbuscular mycorrhiza Mo. Plant-Microbe Interact,1998, 11: 439-448??
[23]  23 Bago B, Shachar-Hill Y, Pfeffer P E. Could the urea cycle be translocating nitrogen in the arbuscular mycorrhizal symbiosis? New Phytol,2001, 149: 4-8
[24]  24 Govindarajulul M, Pfeffer P E, Jin H R, et al. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 2005, 435: 819-823??
[25]  25 Jin H R, Pfeffer P E, Douds D D, et al. The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol, 2005, 168: 301-310
[26]  26 Jin H R. Arginine bi-directional translocation and breakdown into ornithine along the arbuscular mycorrhizal mycelium. Sci China Ser C-Life Sci, 2009, 52: 381-389??
[27]  27 Cruz C, Egsgaard H, Trujillo C, et al. Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhizal fungi. Plant Physiol, 2007, 144: 782-792??
[28]  28 Tian C J, Kasiborski B, Koul R, et al. Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: Gene characterization and the coordination of expression with nitrogen flux. Plant Physiol, 2010, 153: 1175-1187??
[29]  29 Jin H R, Zhang P H, Jiang D H. Study on mechanism of arbuscular mycorrhizal fungi absorbing and transporting nitrogen from different sources to the host plant with isotopic tracing. Acta Pedol Sin, 2011, 48: 888-892
[30]  30 Fellbaum C R, Gachomo E W, Beesetty Y, et al. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA, 2012, 109: 2666-2671??
[31]  31 Kiers E T, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 2011, 333: 880-882??
[32]  32 Olsson P A, Burleigh S H, Van Aarle I M. The influence of external nitrogen on carbon allocation to Glomus intraradices in monoxenic arbuscular mycorrhiza. New Phytol, 2005, 168: 677-686??
[33]  33 Coruzzi G M, Zhou L. Carbon and nitrogen sensing and signaling in plants: emerging matrix effects. Curr Opin Plant Biol, 2001, 4:247-253??
[34]  34 Leigh J, Hodge A, Fitter A H. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol, 2009, 181: 199-207??
[35]  51 Bago B, Zipfel W, Williams R M, et al. Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol, 2002, 128: 108-124??
[36]  52 Borsuk P, Dzikowska A, Empel J, et al. Structure of the arginase coding gene and its transcript in Aspergillus nidulans. Acta Biochim Pol,1999, 46: 391-403
[37]  53 Dzikowska A, Kacprzak M, Tomecki R, et al. Specific induction and carbon/nitrogen repression of arginine catabolism gene of Aspergillus nidulans functional in vivo analysis of the otaA promoter. Fung Genet Biol, 2003, 38: 175-186??
[38]  54 Wagemaker M J M, Eastwood D C, Van Der Drift C, et al. Argininosuccinate synthetase and argininosuccinate lyase: two ornithine cycle enzymes from Agaricus bisporus. Mycol Res, 2007, 111: 493-502??
[39]  55 Tanaka Y, Yano K. Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied plant. Cell Environ, 2005, 28:1247-1254??
[40]  56 Chalot M, Blaudez D, Brun A. Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. Trends Plant Sci, 2006, 11: 263-266??
[41]  57 Guether M, Neuh?user B, Balestrini R, et al. A mycorrhizal-specific ammonium transporter from lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol, 2009, 150: 73-83??
[42]  58 Kobae Y, Tamura Y, Takai S, et al. Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant Cell Physiol, 2010, 51: 1411-1415??
[43]  59 Ruzicka D R, Hausmann N T, Barrios-Masias F H, et al. Transcriptomic and metabolic responses of mycorrhizal roots to nitrogen patches under field conditions. Plant Soil, 2011, 23: 1-18
[44]  60 Bago B, Pfeffer P E, Douds D D, et al. Carbon metabolism in spores of the arbuscular mycorrhizal fungus Glomus intraradices as revealed by nuclear magnetic resonance spectroscopy. Plant Physiol, 1999, 121: 263-271??
[45]  61 Gachomo E, Allen J W, Pfeffer P E, et al. Germinating spores of Glomus intraradices can use internal and exogenous nitrogen sources for de novo biosynthesis of amino acids. New Phytol, 2009, 184: 399-411??
[46]  62 Jin H R, Jiang D H, Zhang P H. Effect of carbon and nitrogen availability on the metabolism of amino acids in the germinating spores of arbuscular mycorrhizal fungi. Pedosphere. 2011, 21: 432-442??
[47]  63 Lammers P J, Jun J, Abubaker J, et al. The glyoxylate cycle in an arbuscular mycorrhizal fungus. Carbon flux and gene expression. Plant Physiol, 2001, 127: 1287-1298??
[48]  64 Yao Q, Ohtomo R, Saito M. Influence of nitrogen and phosphorus on polyphosphate accumulation in Gigaspora margarita during spore germination. Plant Soil, 2010, 330: 303-311??
[49]  65 Fortin J A, Bécard G, Declerck S, et al. Arbuscular mycorrhiza on root-organ cultures. Can J Bot, 2002, 80: 1-20??
[50]  66 Azcón R, Rodríguez R, Amora-Lazcano E, et al. Uptake and metabolism of nitrate in mycorrhizal plants as affected by water availability and N concentration in soil. Eur J Soil Sci, 2008, 59: 131-138??
[51]  67 Subramanian K S, Charest C. Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered conditions. Mycorrhiza, 1999, 9: 69-75
[52]  68 Veresoglou S D, Chen B, Rillig M C. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol Biochem, 2012, 46: 53-62??
[53]  35 Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci USA, 2010, 107: 13754-13759??
[54]  36 Nayyar A A, Hamel C, Hanson K, et al. The arbuscular mycorrhizal symbiosis lins N mineralization to plant demand. Mycorrhiza, 2009, 19: 239-246??
[55]  37 Botton B, Chalot M. Nitrogen assimilation: enzymology in ectomycrrhizas. In: Varma A, Hock B, eds. Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology, 2nd Ed. Berlin: Springer-Verlag, 1999. 333-372
[56]  38 López-Pedrosa A, González-Guerrero M, Valderas A, et al. GintAMTi encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genet Biol, 2006, 43: 102-110??
[57]  39 Pérez-Tienda J, Testillano P S, Balestrini R. GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fung Genet Biol, 2011, 48: 1044-1055??
[58]  40 Subramanian K S, Charest C. Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered conditions. Mycorrhiza, 1999, 9: 69-75
[59]  41 Kaldorf M M, Schmelzer E, Bothe H. Expression of maize and fungal nitrate reductase in arbuscular mycorrhiza Mo. Plant-Microbe Interact,1998, 11, 439-448??
[60]  42 Tisserant1 E, Kohler1 A, Dozolme-Seddas P. The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol, 2012, 193: 755-769??
[61]  43 Abuarghub S M, Read D J. The biology of mycorrhiza in Ericaceae. XII. Quantitative analysis of individual free amino acids in relation to time and depth in the soil profile. New Phytol, 1989, 108: 433-441
[62]  44 Cappellazzo G, Lanfranco L, Fitz Michael, et al. Characterization of an amino acid permease from the endomycorrhizal fungus Glomus mosseae. Plant Physiol, 2008, 147: 429-437??
[63]  45 Leake J R, Read D J. The biology of mycorrhiza in Ericaceae. XIII. Some characteristics of extracellular proteinase of the ericoid endophyte Hymenoscyphus ericae. New Phytol, 1989, 112: 69-76??
[64]  46 Cliquet J B, Murray P J, Boucaud J. Effect of the arbuscular mycorrhizal fungus Glomus fasciculatum on the uptake of amino nitrogen by Lolium perenne. New Phytol, 1997, 137: 345-349??
[65]  47 Müller T, Avolio M, Olivi M, et al. Nitrogen transport in the ectomycorrhiza association: the Hebeloma cylindrosporum-Pinus pinaster model. Phytochem, 2007, 68: 41-51??
[66]  48 Vallorani L, Polidori E, Sacconi C, et al. Biochemical and molecular characterization of NADP glutamate dehydrogenase from the ectomycorrhizal fungus Tuber borchii. New Phytol, 2002, 154: 779-790??
[67]  49 Desh Pal S. Verma, Zhang C. Regulation of proline and arginine biosynthesis in plants. In: Singh B, ed. Plant Amino Acids Biochemistry and Biotechnology. New York: Marcel Dekker, 1999. 249-265
[68]  50 Smith S E, Smith F A. Roles of Arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol, 2011, 62: 227-250??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133