全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

细菌泳动时的细胞取向:理论模拟与实验测定的研究进展

, PP. 259-268

Keywords: 细菌运动,细胞取向,流体动力学,布朗运动,壁效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

小型细菌的运动通常由两部分组成:随细菌的种类不同,近似直线的前进态会被不断出现的停顿、后退或者转向所间隔.端生单鞭毛细菌的鞭毛是生长在由父母代遗传的那个细胞极(称为老细胞极),细菌的化合物感应受体聚集在鞭毛的周围.向前游泳时,处于前面的永远是在上一次细胞分裂过程中刚刚产生的那个细胞极(称为新细胞极).而具有周生鞭毛的大肠杆菌游动时,其鞭毛常在老细胞极的后面形成束.大肠杆菌前进态的细胞取向与端生单鞭毛细菌有一定的相似性.在接近一个固相表面时,周生鞭毛细菌会循一个圆形的轨迹前进,此时的前导细胞极会微微向下倾斜.一些端生单鞭毛细菌在固相界面附近也会作圆周运动,可是却不在前进时,而是在后退时;此时的前导极又是朝向上方的.目前,对于细菌在液体——空气界面处的行为研究几乎空白.现有的生物物理学理论模型可以解释一部分现象,但更多的内部规律还有待进一步阐明.生物物理学理论和分子生物学技术的结合必将大大推动人们对细菌运动规律的了解.

References

[1]  1 Berg H C. E. coli in Motion. Biological and Medical Physics Biomedical Engineering. New York: Springer-Verlag, 2003
[2]  2 Wadhams G H, Armitage J P. Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol, 2004, 5: 1024-1037??
[3]  3 Blair D F. How bacteria sense and swim. Annu Rev Microbiol, 1995, 49: 489-522??
[4]  4 Sourjik V, Armitage J P. Spatial organization in bacterial chemotaxis. EMBO J, 2010, 29: 2724-2733??
[5]  5 Wei Y, Wang X, Liu J, et al. The population dynamics of bacteria in physically structured habitats and the adaptive virtue of random motility. Proc Natl Acad Sci USA, 2011, 108: 4047-4052??
[6]  6 Ramia M, Tullock D L, Phanthien N. The role of hydrodynamic interaction in the locomotion of microorganisms. Biophys J, 1993, 65:755-778??
[7]  7 Berg H C. Random Walks in Biology. Princeton: Princeton University Press, 1993
[8]  8 Dusenbery D B. Minimum size limit for useful locomotion by free-swimming microbes. Proc Natl Acad Sci USA, 1997, 94: 10949-10954??
[9]  9 Berg H C, Brown D A. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature, 1972, 239: 500-504??
[10]  10 Montesinos E. Change in size of Chromatium minus cells in relation to growth rate, sulfur content, and photosynthetic activity: a comparison of pure cultures and field populations. Appl Environ Microbiol, 1987, 53: 864-871
[11]  11 Ahmed T, Shimizu T S, Stocker R. Microfluidics for bacterial chemotaxis. Integr Biol, 2010, 2: 604-629??
[12]  12 Mitchell J G, Martinez-Alonso M, Lalucat J, et al. Velocity changes, long runs, and reversals in the Chromatium minus swimming response. J Bacteriol, 1991, 173: 997-1003
[13]  13 Darnton N C, Turner L, Rojevsky S, et al. On torque and tumbling in swimming Escherichia coli. J Bacteriol, 2007, 189: 1756-1764??
[14]  14 Macnab R M, Ornston M K. Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. J Mol Biol, 1977, 112: 1-30??
[15]  15 Goto T, Nakata K, Baba K, et al. A fluid-dynamic interpretation of the asymmetric motion of singly flagellated bacteria swimming close to a boundary. Biophys J, 2005, 89: 3771-3779??
[16]  16 Homma M, Oota H, Kojima S, et al. Chemotactic responses to an attractant and a repellent by the polar and lateral flagellar systems of Vibrio alginolyticus. Microbiology, 1996, 142: 2777-2783??
[17]  17 Kudo S, Imai N, Nishitoba M, et al. Asymmetric swimming pattern of Vibrio alginolyticus cells with single polar flagella. FEMS Microbiol Lett, 2005, 242: 221-225??
[18]  18 Magariyama Y, Masuda S Y, Takano Y, et al. Difference between forward and backward swimming speeds of the single polar-flagellated bacterium, Vibrio alginolyticus. FEMS Microbiol Lett, 2001, 205: 343-347??
[19]  19 Cabeen M T, Charbon G, Vollmer W, et al. Bacterial cell curvature through mechanical control of cell growth. EMBO J, 2009, 28:1208-1219??
[20]  20 Koyasu S, Shirakihara Y. Caulobacter crescentus flagellar filament has a right-handed helical form. J Mol Biol, 1984, 173: 125-130??
[21]  21 Li G, Tang J X. Low flagellar motor torque and high swimming efficiency of Caulobacter crescentus swarmer cells. Biophys J, 2006, 91:2726-2734??
[22]  22 Li G L, Tam L K, Tang J X. Amplified effect of Brownian motion in bacterial near-surface swimming. Proc Natl Acad Sci USA, 2008, 105:18355-18359??
[23]  23 Taylor B L, Koshland Jr D E. Reversal of flagellar rotation in monotrichous and peritrichous bacteria: generation of changes in direction. J Bacteriol, 1974, 119: 640-642
[24]  24 Vaituzis Z, Doetsch R N. Motility tracks: technique for quantitative study of bacterial movement. Appl Microbiol, 1969, 17: 584-588
[25]  25 Conrad J C, Gibiansky M L, Jin F, et al. Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa. Biophys J, 2011, 100: 1608-1616??
[26]  26 Xie L, Altindal T, Chattopadhyay S, et al. Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis. Proc Natl Acad Sci USA, 2011, 108: 2246-2251??
[27]  27 Stocker R. Reverse and flick: hybrid locomotion in bacteria. Proc Natl Acad Sci USA, 2011, 108: 2635-2636??
[28]  28 Armitage J P, Macnab R M. Unidirectional, intermittent rotation of the flagellum of Rhodobacter sphaeroides. J Bacteriol, 1987, 169:514-518
[29]  29 Armitage J P, Schmitt R. Bacterial chemotaxis: Rhodobacter sphaeroide and Sinorhizobium meliloti-variations on a theme? Microbiology,1997, 143: 3671-3682
[30]  30 Vladimirov N, Lebiedz D, Sourjik V. Predicted auxiliary navigation mechanism of peritrichously flagellated chemotactic bacteria. PLoS Comput Biol, 2010, 6: e1000717??
[31]  31 Berg H C, Purcell E M. Physics of chemoreception. Biophys J, 1977, 20: 193-219??
[32]  32 Alley M, Maddock J R, Shapiro L. Requirement of the carboxyl terminus of a bacterial chemoreceptor for its targeted proteolysis. Science,1993, 259: 1754-1757??
[33]  33 Maddock J R, Shapiro L. Polar location of the chemoreceptor complex in the Escherichia coli cell. Science, 1993, 259: 1717-1723??
[34]  34 Ping L, Weiner B, Kleckner N. Tsr-GFP accumulates linearly with time at cell poles, and can be used to differentiate ''old'' versus ''new'' poles, in Escherichia coli. Mol Microbiol, 2008, 69: 1427-1438??
[35]  35 Thiem S, Kentner D, Sourjik V. Positioning of chemosensory clusters in E. coli and its relation to cell division. EMBO J, 2007, 26:1615-1623??
[36]  36 Greenfield D, McEvoy A L, Shroff H, et al. Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy. PLoS Biol, 2009, 7: e1000137??
[37]  37 Sourjik V. Receptor clustering and signal processing in E. coli chemotaxis. Trends Microbiol, 2004, 12: 569-576??
[38]  38 Boldog T, Grimme S, Li M, et al. Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. Proc Natl Acad Sci USA, 2006, 103: 11509-11514??
[39]  39 Segall J E, Block S M, Berg H C. Temporal comparisons in bacterial chemotaxis. Proc Natl Acad Sci USA, 1986, 83: 8987-8991??
[40]  40 Duke T A J, Bray D. Heightened sensitivity of a lattice of membrane receptors. Proc Natl Acad Sci USA, 1999, 96: 10104-10108??
[41]  41 Sourjik V, Berg H C. Functional interactions between receptors in bacterial chemotaxis. Nature, 2004, 428: 437-441??
[42]  42 Khursigara C M, Lan G, Neumann S, et al. Lateral density of receptor arrays in the membrane plane influences sensitivity of the E. coli chemotaxis response. EMBO J, 2011, 30: 1719-1729??
[43]  43 Hansen C H, Sourjik V, Wingreen N S. A dynamic-signaling-team model for chemotaxis receptors in Escherichia coli. Proc Natl Acad Sci USA, 2010, 107: 17170-17175??
[44]  44 Aquino G, Clausznitzer D, Tollis S, et al. Optimal receptor-cluster size determined by intrinsic and extrinsic noise. Phys Rev E, 2011, 83:021914??
[45]  45 Berg H C, Turner L. Cells of Escherichia coli swim either end forward. Proc Natl Acad Sci USA, 1995, 92: 477-479??
[46]  46 Ping L. The asymmetric flagellar distribution and motility of Escherichia coli. J Mol Biol, 2010, 397: 906-916??
[47]  47 Wadhams G H, Martin A C, Armitage J P. Identification and localization of a methyl-accepting chemotaxis protein in Rhodobacter sphaeroides. Mol Microbiol, 2000, 36: 1222-1233
[48]  48 Thar R, Kühl M. Bacteria are not too small for spatial sensing of chemical gradients: an experimental evidence. Proc Natl Acad Sci USA,2003, 100: 5748-5753??
[49]  49 Hill J, Kalkanci O, McMurry J L, et al. Hydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream. Phys Rev Lett, 2007, 98: 068101??
[50]  50 Vigeant M A S, Ford R M, Wagner M, et al. Reversible and irreversible adhesion of motile Escherichia coli cells analyzed by total internal reflection aqueous fluorescence microscopy. Appl Environ Microbiol, 2002, 68: 2794-2801??
[51]  51 Hsu R, Ganatos P. The motion of a rigid body in viscous-fluid bounded by a plane Wall. J Fluid Mech, 1989, 207: 29-72??
[52]  52 Shum H, Gaffney E A, Smith D J. Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry. Philos Trans R Soc Lond A, 2010, 466: 1725-1748
[53]  53 Cabeen M T, Jacobs-Wagner C. The bacterial cytoskeleton. Annu Rev Genet, 2010, 44: 365-392??
[54]  54 van den Ent F, Johnson C M, Persons L, et al. Bacterial actin MreB assembles in complex with cell shape protein RodZ. EMBO J, 2010, 29:1081-1090??
[55]  55 Frankel R B, Bazylinski D A, Johnson M S, et al. Magneto-aerotaxis in marine coccoid bacteria. Biophys J, 1997, 73: 994-1000??
[56]  56 Aswad D, Koshland Jr D E. Isolation, characterization and complementation of Salmonella typhimurium chemotaxis mutants. J Mol Biol,1975, 97: 225-235??
[57]  57 Lauga E, DiLuzio W R, Whitesides G M, et al. Swimming in circles: motion of bacteria near solid boundaries. Biophys J, 2006, 90: 400-412??
[58]  58 Frymier P D, Ford R M, Berg H C, et al. Three-dimensional tracking of motile bacteria near a solid planar surface. Proc Natl Acad Sci USA,1995, 92: 6195-6199??
[59]  59 DiLuzio W R, Turner L, Mayer M, et al. Escherichia coli swim on the right-hand side. Nature, 2005, 435: 1271-1274??
[60]  60 Maeda K, Imae Y, Shioi J I, et al. Effect of temperature on motility and chemotaxis of Escherichia coli. J Bacteriol, 1976, 127: 1039-1046
[61]  61 Oleksiuk O, Jakovljevic V, Vladimirov N, et al. Thermal robustness of signaling in bacterial chemotaxis. Cell, 2011, 145: 312-321??
[62]  62 Lowe G, Meister M, Berg H C. Rapid rotation of flagellar bundles in swimming bacteria. Nature, 1987, 325: 637-640??
[63]  63 Boehm A, Kaiser M, Li H, et al. Second messenger-mediated adjustment of bacterial swimming velocity. Cell, 2010, 141: 107-116??
[64]  64 Paul K, Nieto V, Carlquist W C, et al. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a backstop brake mechanism. Mol Cell, 2010, 38: 128-139??
[65]  65 Berg H C, Turner L. Chemotaxis of bacteria in glass-capillary arrays - Escherichia coli, motility, microchannel plate, and light-scattering. Biophys J, 1990, 58: 919-930??
[66]  67 Loosdrecht M C M, Norde W, Lyklema J, et al. Hydrophobic and electrostatic parameters in bacterial adhesion. Aquat Sci, 1990, 52:103-114??
[67]  68 Magariyama Y, Sugiyama S, Muramoto K, et al. Simultaneous measurement of bacterial flagellar rotation rate and swimming speed. Biophys J, 1995, 69: 2154-2162??
[68]  69 Nakai T, Kikuda M, Kuroda Y, et al. Speed, trajectory and increment in the number of cells of singly flagellated bacteria swimming close to boundaries. J Biomech Sci Eng, 2009, 4: 2-10??
[69]  70 Vigeant M, Ford R. Interactions between motile Escherichia coli and glass in media with various ionic strengths, as observed with a three-dimensional-tracking microscope. Appl Environ Microbiol, 1997, 63: 3474-3479
[70]  71 McCarter L L. Polar flagellar motility of the Vibrionaceae. Microbiol Mol Biol Rev, 2001, 65: 445-462??
[71]  72 Di Leonardo R, Dell''Arciprete D, Angelani L, et al. Swimming with an image. Phys Rev Lett, 2011, 106: 038101??
[72]  73 Lemelle L, Palierne J-F, Chatre E, et al. Counter-clockwise circular motion of bacteria swimming at air/liquid interface. J Bacteriol, 2010,192: 6307-6308??
[73]  74 Zhang H F, Maslov K, Stoica G, et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotech, 2006, 24: 848-851??
[74]  75 Garrity G M, Brenner D J, Krieg N R, et al. The Proteobacteria. Bergey''s Manual of Systematic Bacteriology. In: Garrity G M, Brenner D J, Krieg N R, eds. Vol. 2. New York: Springer-Verlag, 2005
[75]  76 Lefèvre C T, Song T, Yonnet J P, et al. Characterization of bacterial magnetotactic behaviors by using a magnetospectrophotometry Assay. Appl Environ Microbiol, 2009, 75: 3835-3841??
[76]  77 Matsunaga T, Sakaguchi T, Tadakoro F. Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl Microbiol Biotechnol, 1991, 35: 651-655
[77]  78 Harshey R M. Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol, 2003, 57: 249-273??
[78]  79 Luchsinger R H, Bergersen B, Mitchell J G. Bacterial swimming strategies and turbulence. Biophys J, 1999, 77: 2377-2386??
[79]  80 Young K D. The selective value of bacterial shape. Microbiol Mol Biol Rev, 2006, 70: 660-703??
[80]  81 Weibel D B, DiLuzio W R, Whitesides G M. Microfabrication meets microbiology. Nat Rev Microbiol, 2007, 5: 209-218??
[81]  66 Magariyama Y, Ichiba M, Nakata K, et al. Difference in bacterial motion between forward and backward swimming caused by the wall effect. Biophys J, 2005, 88: 3648-3658??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133