1 Furuya S. An essential role for de novo biosynthesis of L-serine in CNS development. Asia Pac Clin Nutr, 2008, 17: 312-315
[2]
2 Furuya S, Makino A, Hirabayashi Y. An improved method for culturing cerebellar Purkinje cells with differentiated dendrites under a mixed monolayer setting. Brain Res Protoc, 1998, 3: 192-198??
[3]
3 Pizer L I, Potochny M L. Nutritional and regulatory aspects of serine metabolism in Escherichia coli. J Bacteriol, 1964, 88: 611-619
[4]
4 McNeil J B, Bognar A L, Pearlman R E. In vivo analysis of folate coenzymes and their compartmentation in Saccharomyces cerevisiae. Genetics, 1996, 142: 371-381
[5]
5 Gelling C L, Piper M D W, Hong S P, et al. Identification of a novel one-carbon metabolism regulon in Saccharomyces cerevisiae. J Biol Chem, 2004, 279: 7072-7081
[6]
6 Stauffer G V. Biosynthesis of serine, glycine, and one-carbon units. In: Neidhardt F C Curtiss III R, Ingraham J L, Lin E C C, et al. eds. Escherichia coli and Salmonella: Cellular And Molecular Biology, 2nd ed, Washington D C: ASM Press, 1996. 506-513??
[7]
7 Marx A, deGraaf A A, Wiechert W, et al. Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol Bioeng, 1996, 49: 111-129??
[8]
8 Peters-Wendisch P, Netzer R, Eggeling L, et al. 3-Phosphoglycerate dehydrogenase from Corynebacterium glutamicum: the C-terminal domain is not essential for activity but is required for inhibition by L-serine. Appl Microbiol Biotechnol, 2002, 60: 437-441??
[9]
9 Netzer R, Peters-Wendisch P, Eggeling L, et al. Cometabolism of a nongrowth substrate: L-serine utilization by Corynebacterium glutamicum. Appl Environ Microbiol, 2004, 70: 7148-7155??
[10]
10 Haitani Y, Awano N, Yamazaki M, et al. Functional analysis of L-serine O-acetyltransferase from Corynebacterium glutamicum. FEMS Microbiol Lett, 2006, 255: 156-163??
[11]
11 Ikeda M. Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Appl Microbiol Biotechnol,2006, 69: 615-626??
[12]
12 Simic P, Willuhn J, Sahm H, et al. Identification of glyA (encoding serine hydroxymethyltransferase) and its use together with the exporter ThrE to increase L-threonine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol, 2002, 68: 3321-3327??
[13]
13 Schweitzer J E, Stolz M, Diesveld R, et al. The serine hydroxymethyltransferase gene glyA in Corynebacterium glutamicum is controlled by GlyR. J Biotechnol, 2009, 139: 214-221??
[14]
14 Kubota K, Yokozeki K. Production of L-serine from glycine by Corynebacterium glycinophilum and properties of serine hydroxymethyltransferase, a key enzyme in L-serine production. J Ferment Bioeng, 1989, 67: 387-390??
[15]
15 Izumi Y, Yoshida T, Miyazaki S S, et al. L-Serine production by a methylotroph and its related enzymes. Appl Microbiol Biotechnol,1993, 39: 427-432??
[16]
16 Stolz M, Peters-Wendisch P, Etterich H, et al. Reduced folate supply as a key to enhanced L-serine production by Corynebacterium glutamicum. Appl Environ Microbiol, 2007, 73: 750-755??
[17]
17 Becker J, Zelder O, H?fner S, et al. From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng, 2011, 13: 159-168??
[18]
18 Holátko J, Elisáková V, Prouza M, et al. Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J Biotechnol, 2009, 139: 203-210??
[19]
19 Park S D, Lee J Y, Sim S Y, et al. Characteristics of methionine production by an engineered Corynebacterium glutamicum strain. Metab Eng, 2007, 9: 327-336??
[20]
20 Peters-Wendisch P, Stolz M, Etterich H, et al. Metabolic engineering of Corynebacterium glutamicum for L-serine production. Appl Environ Microbiol, 2005, 71: 7139-7144??
[21]
21 Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: a laboratory manual, 2nd edn. New York: Cold Spring Harbor Laboratory Press,1989
[22]
22 Sch?fer A, Tauch A, J?ger W, et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Genetics, 1994, 145: 69-73
[23]
23 Jakoby M, Ngouoto-Nkili C E, Burkovski A. Construction and application of new Corynebacterium glutamicum vectors. Biotechnol Tech,1999, 13: 437-441??
[24]
24 Cremer J, Eggeling L, Sahm H. Control of the lysine biosynthesis sequence in Corynebacterium glutamicum as analyzed by overexpression of the individual corresponding genes. Appl Environ Microbiol, 1991, 57: 1746-1752
[25]
25 van der Rest M E, Lange C, Molenaar D. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol, 1999, 52: 541-545??
[26]
26 J?ger W, Sch?fer A, Pühler A, et al. Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. J Bacteriol, 1992, 174: 5462-5465
[27]
27 Zhang Y, Shang X, Deng A, et al. Genetic and biochemical characterization of Corynebacterium glutamicum ATP phosphoribosyltransferase and its three mutants resistant to feedback inhibition by histidine. Biochimie, 2012, 94: 829-838??
[28]
28 Persicke M, Plassmeier J, Neuweger H, et al. Size exclusion chromatography-an improved method to harvest Corynebacterium glutamicum cells for the analysis of cytosolic metabolites. J Biotechnol, 2011, 155: 266-267??
[29]
29 Taymaz-Nikerel H, de Mey M, Ras C, et al. Development and application of a differential method for reliable metabolome analysis in Escherichia coli. Anal Biochem, 2009, 386: 9-19??
[30]
30 Klimacek M, Krahulec S, Sauer U, et al. Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis. Appl Environ Microbiol, 2010, 76: 7566-7574??
[31]
31 Kr?mer J O, Wittmann C, Schr?der H, et al. Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum. Metab Eng, 2006, 8: 353-369??
[32]
32 Vallino J J, Stephanopoulos G. Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol Bioeng, 1993, 41: 633-646??
[33]
33 Radmacher E, Vaitsikova A, Burger U, et al. Linking central metabolism with increased pathway flux: L-valine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol, 2002, 68: 2246-2250??
[34]
34 Stauffer L T, Stauffer G V. Role for the leucine-responsive regulatory protein (Lrp) as a structural protein in regulating the Escherichia coli gcvTHP operon. Microbiology, 1999, 145: 569-576??
[35]
35 Kalinowski J, Bathe B, Bartels D, et al. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol, 2003, 104: 5-25??
[36]
36 Han M J, Lee S Y. The Escherichia coli proteome: past, present, and future prospects. Microbiol Mol Biol Rev, 2006, 70: 362-439??
[37]
37 Kjeldsen K R, Nielsen J. In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnol Bioeng, 2009, 102: 583-597??