全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

小立碗藓PpCDC48II基因的定点敲除导致冷驯化后的冻害敏感

, PP. 209-217

Keywords: PpCDC48II,小立碗藓,基因敲除,冷驯化,抗冻性

Full-Text   Cite this paper   Add to My Lib

Abstract:

CDC48是真核生物AAA蛋白家族的一个重要成员,进化上相当保守,能与许多不同的协同因子相互作用,形成各种蛋白复合体参与调节细胞内多种重要的生理活动.本研究利用小立碗藓EST数据库信息克隆了小立碗藓AAA蛋白家族中PpCDC48II基因,其含有2个典型的ATPase结构域与拟南芥AtCDC48A具有非常高的同源性.0℃冷胁迫处理48和72h后,PpCDC48II在转录水平表现了诱导表达的特性.为了进一步阐明这个基因的功能,利用小立碗藓通过高效同源重组实现基因敲除的这一特点,获得了PpCDC48II单基因敲除的突变体.通过抗冻实验发现,冷驯化后的Ppcdc48II抗冻的能力明显降低,推测PpCDC48II在植物低温驯化诱导的抗冻过程中发挥了重要的作用.

References

[1]  1 Reski R. Physcomitrella and Arabidopsis: the David and Goliath of reverse genetics. Trends Plant Sci, 1998, 3: 209–210??
[2]  2 Schaefer D G. Gene targeting in Physcomitrella patens. Curr Opin Plant Biol, 2001, 4: 143–150??
[3]  3 Anzu M, Manabu N, Keita A, et al. Abscisic acid-induced freezing tolerance in the moss Physcomitrella patens is accompanied by increased expression of stress-related genes. J Plant Physiol, 2003, 160: 475–483??
[4]  4 ShintaroI, Nobuhiko O, Michiaki Y. Cold-inducible expression of the cell division cycle gene CDC48 and its promotion of cell proliferation during cold acclimation in zebrafish cells. FEBS Lett, 2003, 549: 14–20??
[5]  5 Hirsch C, Gauss R, Horn S C, et al. The ubiquitylation machinery of the endoplasmic reticulum. Nature, 2009, 458: 453–460??
[6]  6 Vembar S S, Brodsky J L. One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol, 2008, 9: 944–957??
[7]  7 Ramadan K, Bruderer R, Spiga F M, et al. Cdc48/p97 promotes reformation of the nucleus by extracting the kinase Aurora B from chromatin. Nature, 2007, 450: 1258–1262??
[8]  8 Halawani D, Latterich M. p97: The cell’s molecular purgatory? Mol Cell, 2006, 22: 713–717
[9]  9 Janiesch P C, Kim J, Mouysset J, et al. The ubiquitin-selective chaperone CDC-48/p97 links myosin assembly to human myopathy. Nat Cell Biol, 2007, 9: 379–390??
[10]  10 Alexandru G, Graumann J, Smith G T, et al. UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover. Cell, 2008,134: 804–816??
[11]  11 De Bose-Boyd R A. Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res, 2008, 18: 609–621??
[12]  12 Ye Y. Diverse functions with a common regulator: ubiquitin takes command of an AAA ATPase. J Struct Biol, 2006, 156: 29–40??
[13]  24 Pearce R S. Molecular analysis of acclimation to cold. Plant Growth Regul, 1999, 29: 47–76??
[14]  25 Thomashow M F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol,1999, 50: 571–599??
[15]  26 Xin Z, Browse J. Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ, 2000, 23: 893–902??
[16]  27 Seki M, Narusaka M, Abe H, et al. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell, 2001, 13: 61–72
[17]  28 Anzu M, Manabu N, Keiichi I, et al. Cold acclimation in bryophytes: low-temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid. Planta,2005, 220: 414–423??
[18]  29 NDong C, Danyluk J, Wilson K E, et al. Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. Plant Physiol, 2002, 129: 1368–1381??
[19]  30 Hara M, Terashima S, Fukaya T, et al. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dihedron in transgenic tobacco. Planta, 2003, 217: 290–298
[20]  31 Fr?hlich K U, Fries H W, Rudiger M, et al. Yeast cell cycle protein CDC48p shows full-length homology to the mammalian protein VCP and is a member of a protein family ivolved in secretion, peroxisome formation, and gene expression. J Cell Biol, 1991, 114: 443–453??
[21]  32 Petek B, Aysun P, Fadime A K. Different p97/VCP complexes function in retrotranslocation step of mammalian Er-associated degradation (ERAD). Int J Biochem Cell Biol, 2011, 43: 613–622??
[22]  33 Moir D, Stewart S E, Osmond B C, et al. Cold-sensitive cell-division-cycle mutants of yeast: isolation, properties, and pseudoreversion studies. Cell, 1982, 100: 547–563
[23]  34 Shirogane T, Fukada T, Muller J M, et al. Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity, 1999, 11: 709–719??
[24]  35 Müller J M, Deinhardt K, Rosewell L, et al. Targeted deletion of p97 (VCP/CDC48) in mouse resultsin early embryonic lethality. BBRC,2007, 354: 459–465
[25]  36 Wu D, Chen P J, Chen S, et al. C. elegans MAC-1, an essential member of the AAA family of ATPases, can bind CED-4 and prevent cell death. Development, 1999, 126: 2021–2031
[26]  37 Ralf J B, Hans Z. Mechanisms of Cdc48/VCP-mediated cell death-from yeast apoptosis to human disease. Biochim Biophys Acta, 2008,1783: 1418–1435??
[27]  38 Rati V, Robert O, Ruihua F, et al. Cdc48/p97 mediates UV-dependent turnover of RNA pol II. Molecular Cell, 2010, 41: 82–92
[28]  39 Yeung H O, Kloppsteck P, Niwa H, et al. Insights into adaptor binding to the AAA protein p97. Biochem Soc Trans, 2008, 36: 62–72??
[29]  13 Sookhee P, David M R, Sebastian Y B. In planta analysis of the cell cycle-dependent localization of AtCDC48A and its critical roles in cell division, expansion, and differentiation. Plant Physiol, 2008, 148: 246–258??
[30]  14 Rancour D M, Dickey C E, Park S, et al. Characterization of AtCDC48. Evidence for multiple membrane fusion mechanisms at the plane of cell division in plants. Plant Physiol, 2002, 130: 1241–1253??
[31]  15 Feiler H S, Desprez T, Santoni V, et al. The higher plant Arabidopsis thaliana encodes a functional CDC48 homologue which is highly expressed in dividing and expanding cells. EMBO J, 1995, 14: 5626–5637
[32]  16 Zimmermann P, Hirsch-Hoffmann M, Hennig L, et al. GENEVESTIGATOR: Arabidopsis microarray database and analysis toolbox. Plant Physiol, 2004, 136: 2621–2632??
[33]  17 Zimmermann P, Hennig L, Gruissem W. Gene-expression analysis and network discovery using Genevestigator. Trends Plant Sci, 2005, 10:407–409??
[34]  18 Sookhee P, David M R, Sebastian Y B. In planta analysis of the cell cycle-dependent localization of AtCDC48A and its critical roles in cell division, expansion, and differentiation. Plant Physiol, 2008, 148: 246–258??
[35]  19 Hansol B, Soo M C, Seong W Y, et al. Suppression of the ER-localized AAA ATPase NgCDC48 inhibits tobacco growth and development. Mol Cells, 2009, 28: 57–65??
[36]  20 Ashton N W, Cove D J, Featherstone D R. The isolation and physiological analysis of mutants of the moss Physcomitrella patens. Planta,1979, 144: 437–442??
[37]  21 Minami A, Nagao M, Arakawa K, et al. Abscisic acid-induced freezing tolerance in the moss Physcomitrella patens is accompanied by increased expression of stress-related genes. J Plant Physiol, 2003, 160: 475–483??
[38]  22 Porra R J, Thompson W A, Kriedemann P E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. BBA-Bioenergetics, 1989, 975: 384–394??
[39]  23 Nishiyama T, Fujita T, Shin I T, et al. Comparative genomics of Physcomitrella patens gametophy tictranscriptome and Arabidopsis thaliana: implication for land plant evolution. Proc Natl Acad Sci USA, 2003, 100: 8007–8012??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133