全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

隐形微球表面吸附血浆蛋白的蛋白质组学分析

, PP. 185-195

Keywords: 聚乙二醇修饰,免疫修饰,同位素标记相对和绝对定量技术,质谱分析,聚苯乙烯乳胶微球,蛋白质组学

Full-Text   Cite this paper   Add to My Lib

Abstract:

细胞和生物材料表面的甲氧基聚乙二醇(mPEG)修饰是一项具有广阔应用前景的非药理性免疫调节技术,但由于细胞的不稳定性,目前对其表面与血浆间相互作用的认识还不够深入.本实验采用相对稳定的乳胶微球作为模型,来研究其表面对血浆蛋白的吸附.结果显示,血浆总蛋白的吸附水平随着mPEG修饰浓度和分子量的增加而降低,未修饰的乳胶微球表面蛋白吸附量为(159.9±6.4)ng/cm2,mPEG修饰后,蛋白吸附量分别下降至(18.4±0.8)ng/cm2(1mmol/L2kDSCmPEG)和(52.3±5.3)ng/cm2(1mmol/L20kDSCmPEG).聚炳烯酰胺凝胶电泳(SDS-PAGE)和同位素标记相对和绝对定量的质谱技术(iTRAQ-MS)分析表明,在PEG修饰微球表面的蛋白质吸附层中,参与免疫系统活化的蛋白质丰度明显下降.因此,免疫修饰细胞和材料的生物学效应是通过降低抗原性及减弱表面与大分子间相互作用来实现的.

References

[1]  1 Gallagher W M, Lynch I, Allen L T, et al. Molecular basis of cell-biomaterial interaction: insights gained from transcriptomic and proteomic studies. Biomaterials, 2006, 27: 5871–5882??
[2]  2 Ratner B D, Bryant S J. Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng, 2004, 6: 41–75??
[3]  3 Chen A M, Scott M D. Current and future applications of immunological attenuation via pegylation of cells and tissue. Bio Drugs, 2001, 15:833–847
[4]  4 Chen A M, Scott M D. Comparative analysis of polymer and linker chemistries on the efficacy of immunocamouflage of murine leukocytes. Artif Cells Blood Substit Immobil Biotechnol, 2006, 34: 305–322??
[5]  5 Scott M D, Murad K L, Koumpouras F, et al. Chemical camouflage of antigenic determinants: stealth erythrocytes. Proc Natl Acad Sci USA,1997, 94: 7566–7571??
[6]  6 Sutton T C, Scott M D. The effect of grafted methoxypoly(ethylene glycol) chain length on the inhibition of respiratory syncytial virus (RSV) infection and proliferation. Biomaterials, 2010, 31: 4223–4230??
[7]  7 Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227: 680–685??
[8]  8 Ross P L, Huang Y N, Marchese J N, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics, 2004, 3: 1154–1169??
[9]  9 Vroman L. Effect of absorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature, 1962, 196: 476–477??
[10]  10 Horbett T A. Mass action effects on competitive adsorption of fibrinogen from hemoglobin solutions and from plasma. Thromb Haemost,1984, 51: 174–181
[11]  11 Harris J M. Introduction to bioetchnical and biomedical applications of poly(ethylene glycol). In: Harris M J, ed. Topics in Applied Chemistry. New York: Plenum Press, 1992. 1–14??
[12]  12 Andrade J D. Interfacial phenomena and biomaterials. Med Instrum, 1973, 7: 110–119
[13]  13 Bradley A J, Murad K L, Regan K L, et al. Biophysical consequences of linker chemistry and polymer size on stealth erythrocytes: size does matter. Biochim Biophys Acta, 2002, 1561: 147–158??
[14]  14 Murad K L, Mahany K L, Brugnara C, et al. Structural and functional consequences of antigenic modulation of red blood cells with methoxypoly(ethylene glycol). Blood, 1999, 93: 2121–2127
[15]  15 Bradley A J, Test S T, Murad K L, et al. Interactions of IgM ABO antibodies and complement with methoxy-PEG-modified human RBCs. Transfusion, 2001, 41: 1225–1233??
[16]  16 Scott M D, Chen A M. Beyond the red cell: pegylation of other blood cells and tissues. Transfus Clin Biol, 2004, 11: 40–46??
[17]  17 Bradley A J, Scott M D. Separation and purification of methoxypoly(ethylene glycol) grafted red blood cells via two-phase partitioning. J Chromatogr B Analyt Technol Biomed Life Sci, 2004, 807: 163–168??
[18]  18 Bradley A J, Scott M D. Immune complex binding by immunocamouflaged
[19]  [poly(ethylene glycol)-grafted] erythrocytes. Am J Hematol,2007, 82: 970–975??
[20]  19 Murad K L, Gosselin E J, Eaton J W, et al. Stealth cells: prevention of major histocompatibility complex class II-mediated T-cell activation by cell surface modification. Blood, 1999, 94: 2135–2141
[21]  20 Chen A M, Scott M D. Immunocamouflage: prevention of transfusion-induced graft-versus-host disease via polymer grafting of donor cells. J Biomed Mater Res A, 2003, 67: 626–636
[22]  21 Scott M D, Murad K L. Cellular camouflage: fooling the immune system with polymers. Curr Pharm Des, 1998, 4: 423–438
[23]  22 McCoy L L, Scott M D. Broad-spectrum antiviral porphylaxis: inhibition of viral infection by polymer grafting with methoxypoly(ethylene glycol). In: Torrence P F, ed. Antiviral Drug Discovery for Emerging Diseases and Bioterrorism Threats. New York: John Wiley & Sons, Inc,2005. 379–395??
[24]  23 Szleifer I. Protein adsorption on surfaces with grafted polymers: a theoretical approach. Biophys J, 1997, 72: 595–612??
[25]  24 Hermans J. Excluded-volume theory of polymer-protein interactions based on polymer chain statistics. J Chem Phys, 1982, 77: 2193–2203??
[26]  25 Brooks D E, Haynes C A, Hritcu D, et al. Size exclusion chromatography does not require pores. Proc Natl Acad Sci USA, 2000, 97:7064–7067??
[27]  26 Yasmeen D, Ellerson J R, Dorrington K J, et al. The structure and function of immunoglobulin domains. IV. The distribution of some effector functions among the Cgamma2 and Cgamma3 homology regions of human immunoglobulin G1. J Immunol, 1976, 116: 518–526
[28]  27 Colomb M, Porter R R. Characterization of a plasmin-digest fragment of rabbit immunoglobulin gamma that binds antigen and complement. Biochem J, 1975, 145: 177–183
[29]  28 Reid K B. Complete amino acid sequences of the three collagen-like regions present in subcomponent C1q of the first component of human complement. Biochem J, 1979, 179: 367–371
[30]  29 Lawler J, Duquette M, Urry L, et al. The evolution of the thrombospondin gene family. J Mol Evol, 1993, 36: 509–516??
[31]  30 Miyakis S, Giannakopoulos B, Krilis S A. Beta 2 glycoprotein I-function in health and disease. Thromb Res, 2004, 114: 335–346??
[32]  31 Brighton T A, Hogg P J, Dai Y P, et al. Beta 2-glycoprotein I in thrombosis: evidence for a role as a natural anticoagulant. Br J Haematol,1996, 93: 185–194??
[33]  32 Doyen V, Rubio M, Braun D, et al. Thrombospondin 1 is an autocrine negative regulator of human dendritic cell activation. J Exp Med,2003, 198: 1277–1283??
[34]  33 Li Z, He L, Wilson K, et al. Thrombospondin-1 inhibits TCR-mediated T lymphocyte early activation. J Immunol, 2001, 166: 2427–2436
[35]  34 Fleischer J, Grage-Griebenow E, Kasper B, et al. Platelet factor 4 inhibits proliferation and cytokine release of activated human T cells. J Immunol, 2002, 169: 770–777
[36]  35 Ehlert J E, Ludwig A, Grimm T A, et al. Down-regulation of neutrophil functions by the ELR(+) CXC chemokine platelet basic protein. Blood, 2000, 96: 2965–2972

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133