10 Boch J, Bonas U. Xanthomonas AvrBs3 family-type Ⅲ effectors: discovery and function. Annu Rev Phytopathol, 2010, 48: 419-436
[2]
11 Moscou M J, Bogdanove A J. A simple cipher governs DNA recognition by TAL effectors. Science, 2009, 326: 1501
[3]
12 Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-type Ⅲ effectors. Science, 2009, 326: 1509-1512
[4]
13 Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol, 1987, 169: 5429-5433
[5]
14 Haft D H, Selengut J, Mongodin E F, et al. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol, 2005, 1: e60
[6]
15 Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010, 327: 167-170
[7]
16 Marraffini L A, Sontheimer E J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 2008, 322: 1843-1845
[8]
17 Hwang W Y, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol, 2013, 31: 227-229
[9]
18 Makarova K S, Haft D H, Barrangou R, et al. Evolution and classification of the CRISPR-Cas systems. Nature Rev Microbiol, 2011, 9: 467-477
[10]
19 Jiang W, Bikard D, Cox D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol, 2013, 31: 233-239
[11]
20 Barrangou R. RNA-mediated programmable DNA cleavage. Nat Biotechnol, 2012, 30: 836-838
[12]
21 Wang H, Yang H, Shivalila C S, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013, 153: 910-918
[13]
22 Gratz S J, Cummings A M, Nguyen J N, et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics, 2013, 194: 1029-1035
[14]
23 Hsu P D, Scott D A, Weinstein J A, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol, 2013, 31: 827-832
[15]
24 Fu Y, Foden J A, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 2013, 31: 822-826
[16]
25 Pattanayak V, Lin S, Guilinger J P, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol, 2013, 31: 839-843
[17]
26 Cui X, Ji D, Fisher D A, et al. Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol, 2011, 29: 64-67
[18]
27 Zu Y, Tong X, Wang Z, et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods, 2013, 10: 329-331
[19]
28 Dickinson D J, Ward J D, Reiner D J, et al. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods, 2013, 10: 1028-1034
[20]
1 Dafa''alla T H, Condon G C, Condon K C, et al. Transposon-free insertions for insect genetic engineering. Nat Biotechnol, 2006, 24: 820-821
[21]
2 Gaj T, Sirk S J, Barbas C F 3rd. Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Biotechnol Bioeng, 2013, doi: 10.1002/bit.25096
[22]
3 Heyer W D, Ehmsen K T, Liu J. Regulation of homologous recombination in eukaryotes. Annu Rev Genet, 2010, 45: 113-139
[23]
4 Lieber M R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem, 2010, 79: 181-211
[24]
5 Smith J, Grizot S, Arnould S, et al. A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res, 2006, 34: e149
[25]
6 Gaj T, Gersbach C A, Barbas C F 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013, 31: 397-405
[26]
7 Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337: 816-821
[27]
8 Klug A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem, 2010, 79: 213-231
[28]
9 Carroll D, Morton J J, Beumer K J, et al. Design, construction and in vitro testing of zinc finger nucleases. Nat Protoc, 2006, 1: 1329-1341
[29]
29 Bikard D, Jiang W, Samai P, et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res, 2013, 41: 7429-7437
[30]
30 Bibikova M, Golic M, Golic G, et al. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics, 2002, 161: 1169-1175
[31]
31 Takasu Y, Kobayashi I, Beumer K, et al. Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. Insect Biochem Mol Biol, 2010, 40: 759-765
[32]
32 Ma S, Zhang S, Wang F, et al. Highly efficient and specific genome editing in silkworm using custom TALENs. PLoS One, 2012, 7: e45035
[33]
33 Watanabe T, Ochiai H, Sakuma T, et al. Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases. Nat Commun, 2012, 3: 1017
[34]
34 Liu J, Li C, Yu Z, et al. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Genet Genomics, 2012, 39: 209-215
[35]
35 Gratz S J, Cummings A M, Nguyen J N, et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics, 2013, 194: 1029-1035