全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基因组编辑技术及其在昆虫研究中的应用

DOI: 10.1360/052013-312, PP. 1105-1111

Keywords: 基因组编辑,归巢内切酶,ZFNs,TALENs,CRISPR/Cas

Full-Text   Cite this paper   Add to My Lib

Abstract:

基因组编辑技术是进行功能基因组研究的重要工具.锌指核酸酶技术(ZFNs)、类转录激活因子核酸酶技术(TALENs)以及CRISPR/Cas技术是近年来发展起来的3种主流基因组编辑技术.这3种基因组编辑技术的原理都是通过在生物基因组特定位点制造DNA断裂损伤,从而激活机体自身的DNA损伤修复机制,在此过程中引发各种变异.ZFNs是最早发展的通用基因组编辑技术,可用以实施定点敲除和定点敲入变异,但ZFNs技术的发展受限于构建难度大、成本高等缺点.TALENs技术在ZFNs基础上发展而来,较ZFNs技术而言,TALENs技术具备构建灵活度高、成本低等优势.不同于ZFNs与TALENs技术,CRISPR/Cas技术具有独特的DNA靶向机制,这种机制使其非常适合进行多位点编辑.目前,3种技术都在多种物种中成功测试,例如小鼠、斑马鱼、果蝇、线虫和家蚕.在后基因组时代,这些新技术工具必将在未来功能基因组研究中发挥重大作用.

References

[1]  10 Boch J, Bonas U. Xanthomonas AvrBs3 family-type Ⅲ effectors: discovery and function. Annu Rev Phytopathol, 2010, 48: 419-436
[2]  11 Moscou M J, Bogdanove A J. A simple cipher governs DNA recognition by TAL effectors. Science, 2009, 326: 1501
[3]  12 Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-type Ⅲ effectors. Science, 2009, 326: 1509-1512
[4]  13 Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol, 1987, 169: 5429-5433
[5]  14 Haft D H, Selengut J, Mongodin E F, et al. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol, 2005, 1: e60
[6]  15 Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010, 327: 167-170
[7]  16 Marraffini L A, Sontheimer E J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 2008, 322: 1843-1845
[8]  17 Hwang W Y, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol, 2013, 31: 227-229
[9]  18 Makarova K S, Haft D H, Barrangou R, et al. Evolution and classification of the CRISPR-Cas systems. Nature Rev Microbiol, 2011, 9: 467-477
[10]  19 Jiang W, Bikard D, Cox D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol, 2013, 31: 233-239
[11]  20 Barrangou R. RNA-mediated programmable DNA cleavage. Nat Biotechnol, 2012, 30: 836-838
[12]  21 Wang H, Yang H, Shivalila C S, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013, 153: 910-918
[13]  22 Gratz S J, Cummings A M, Nguyen J N, et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics, 2013, 194: 1029-1035
[14]  23 Hsu P D, Scott D A, Weinstein J A, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol, 2013, 31: 827-832
[15]  24 Fu Y, Foden J A, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 2013, 31: 822-826
[16]  25 Pattanayak V, Lin S, Guilinger J P, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol, 2013, 31: 839-843
[17]  26 Cui X, Ji D, Fisher D A, et al. Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol, 2011, 29: 64-67
[18]  27 Zu Y, Tong X, Wang Z, et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods, 2013, 10: 329-331
[19]  28 Dickinson D J, Ward J D, Reiner D J, et al. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods, 2013, 10: 1028-1034
[20]  1 Dafa''alla T H, Condon G C, Condon K C, et al. Transposon-free insertions for insect genetic engineering. Nat Biotechnol, 2006, 24: 820-821
[21]  2 Gaj T, Sirk S J, Barbas C F 3rd. Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Biotechnol Bioeng, 2013, doi: 10.1002/bit.25096
[22]  3 Heyer W D, Ehmsen K T, Liu J. Regulation of homologous recombination in eukaryotes. Annu Rev Genet, 2010, 45: 113-139
[23]  4 Lieber M R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem, 2010, 79: 181-211
[24]  5 Smith J, Grizot S, Arnould S, et al. A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res, 2006, 34: e149
[25]  6 Gaj T, Gersbach C A, Barbas C F 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013, 31: 397-405
[26]  7 Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337: 816-821
[27]  8 Klug A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem, 2010, 79: 213-231
[28]  9 Carroll D, Morton J J, Beumer K J, et al. Design, construction and in vitro testing of zinc finger nucleases. Nat Protoc, 2006, 1: 1329-1341
[29]  29 Bikard D, Jiang W, Samai P, et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res, 2013, 41: 7429-7437
[30]  30 Bibikova M, Golic M, Golic G, et al. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics, 2002, 161: 1169-1175
[31]  31 Takasu Y, Kobayashi I, Beumer K, et al. Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. Insect Biochem Mol Biol, 2010, 40: 759-765
[32]  32 Ma S, Zhang S, Wang F, et al. Highly efficient and specific genome editing in silkworm using custom TALENs. PLoS One, 2012, 7: e45035
[33]  33 Watanabe T, Ochiai H, Sakuma T, et al. Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases. Nat Commun, 2012, 3: 1017
[34]  34 Liu J, Li C, Yu Z, et al. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Genet Genomics, 2012, 39: 209-215
[35]  35 Gratz S J, Cummings A M, Nguyen J N, et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics, 2013, 194: 1029-1035

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133