15 Paoletti M, Seymour F A, Alcocer M J C, et al. Mating type and the genetic basis of self-fertility in the model fungus Aspergillus nidulans. Curr Biol, 2007, 17: 1384-1389
[2]
16 Kim H, Borkovich K A. A pheromone receptor gene pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Mol Microbiol, 2004, 52: 1781-1798
[3]
17 Nieuwenhuis B P, Aanen D K. Sexual selection in fungi. J Evol Biol, 2012, 25: 2397-2411
[4]
18 Zheng P, Xia Y L, Xiao G H, et al. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol, 2011, 12: R116
[5]
19 Baasiri R A, Lu X, Rowley P S, et al. Overlapping functions for two G protein α subunits in Neurospora crassa. Genetics, 1997, 147: 137-145
[6]
20 Kays A M, Borkovich K A. Severe impairment of growth and differentiation in a Neurospora crassa mutant lacking all heterotrimeric Gα proteins. Genetics, 2004, 166: 1229-1240
[7]
21 Kays A M, Rowley P S, Baasiri R A, et al. Regulation of conidiation and adenylyl cyclase levels by the Gα protein GNA-3 in Neurospora crassa. Mol Cell Biol, 2000, 20: 7693-7705
[8]
22 Kamerewerd J, Jansson M, Nowrousian M, et al. Three α-subunits of heterotrimeric G proteins and an adenylyl cyclase have distinct roles in fruiting body development in a homothallic fungus. Genetics, 2008, 180: 191-206
[9]
23 Ito S, Matsui Y, Toh-e A, et al. Isolation and characterization of the krev-1 gene, a novel member of ras superfamily in Neurospora crassa: involvement in sexual cycle progression. Mol Gen Genet, 1997, 255: 429-437
[10]
24 Bistis G N, Perkins D D, Read N D. Different cell types in Neurospora crassa. Fungal Genet Biol, 2003, 50: 17-19
[11]
25 Blumenstein A, Vienken K, Tasler R, et al. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol, 2005, 15: 1833-1838
[12]
26 Bayram O, Braus G H, Fisher R, et al. Spotlight on Aspergillus nidulans photosensory system. Fungal Genet Biol, 2010, 47: 900-908
[13]
27 Oda K, Hasunuma K. Genetic analysis of signal transduction through light-induced protein phosphorylation in Neurospora crassa perithecia. Mol Gen Genet, 1997, 256: 593-601
[14]
28 Han S Y, Ko J A, Kim J H, et al. Isolation and functional analysis of the silA gene that controls sexual development in response to light in Aspergillus nidulans. Korean J Mycol, 2008, 36: 189-195
[15]
29 Bowman E J, Kendle R, Bowman B J. Disruption of vma-1, the gene encoding the catalytic subunit of the vacuolar H+-ATPase, causes severe morphological changes in Neurospora crassa. J Biol Chem, 2000, 275: 167-176
[16]
30 Lee D W, Kim S, Kim S J, et al. The lsdA gene is necessary for sexual development inhibition by a salt in Aspergillus nidulans. Curr Genet, 2001, 39: 237-243
[17]
31 Kim H S, Han K Y, Kim K J, et al. The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet Biol, 2002, 37: 72-80
[18]
32 Goodrich-Tanrikulu M, Howe K, Stafford A, et al. Changes in fatty acid composition of Neurospora crassa accompany sexual development and ascospore germination. Microbiology, 1998, 144: 1713-1720
[19]
33 Goodrich-Tanrikulu M, Jacobson D J, Stafford A E, et al. Characterization of Neurospora crassa mutants isolated following repeat-induced point mutation of the beta subunit of fatty acid synthase. Curr Genet, 1999, 36: 147-152
[20]
34 Tsitsigiannis D I, Zarnowski R, Keller N P. The lipid body protein, PpoA, coordinates sexual and asexual sporulation in Aspergillus nidulans. J Biol Chem, 2004, 279: 11344-11353
[21]
35 Tsitsigiannis D I, Kowieski T M, Zarnowski R, et al. Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiology, 2005, 151: 1809-1821
[22]
36 Nowrousian M. A novel polyketide biosynthesis gene cluster is involved in fruiting body morphogenesis in the filamentous fungi Sordaria macrospora and Neurospora crassa. Curr Genet, 2009, 55: 185-198
[23]
37 Bayram ? S, Bayram ?, Valerius O, et al. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genet, 2010, 6: e1001226
[24]
38 Tudzynski P, Heller J, Siegmund U. Reactive oxygen species generation in fungal development and pathogenesis. Curr Opin Microbiol, 2012, 15: 653-659
[25]
55 Bruggeman J, Debets A J M, Wijngaarden P J, et al. Sex slows down the accumulation of deleterious mutations in the homothallic fungus Aspergillus nidulans. Genetics, 2003, 164: 479-485
[26]
56 P?ggeler S, Masloff S, Jacobsen S, et al. Karyotype polymorphism correlates with intraspecific infertility in the homothallic ascomycete Sordaria macrospora. J Evol Biol, 2000, 13: 281-289
[27]
57 Xiao G H, Ying S H, Zheng P, et al. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep, 2012, 2: 483
[28]
58 Galagan J E, Calvo S E, Cuomo C, et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature, 2005, 438: 1105-1115
[29]
59 Dijksterhuis J. Heat-resistant ascospores. In: Dijksterhuis J, Samson R A, eds. Food Mycology: A Multifaceted Approach to Fungi and Food. Boca Raton: CRC Press, 2007. 101-117
[30]
6 Whittle C A, Nygren K, Johannesson H. Consequences of reproductive mode on genome evolution in fungi. Fungal Genet Boil, 2011, 48: 661-667
[31]
7 Ni M, Feretzaki M, Sun S, et al. Sex in fungi. Annu Rev Genet, 2011, 45: 405-430
[32]
8 Zheng P, Xia Y L, Zhang S W, et al. 2013. Genetics of Cordyceps and related fungi. Appl Microbiol Biotechnol, 2013, 97: 2797-2804
[33]
9 Pontecorvo G. The genetics of Aspergillus nidulans. In: Demerec M, ed. Advances in Genetics. New York: Academic Press, 1953. 141-238
[34]
10 Giraud T, Yockteng R, López-Villavicencio M, et al. Mating system of the anther smut fungus Microbotryum violaceum: selfing under heterothallism. Eukaryot Cell, 2008, 7: 765-775
[35]
11 P?ggeler S, Nowrousian M, Kück U. Fruiting body development in ascomycetes. In: Kües U, Fischer R, eds. Growth, Differentiation and Sexuality. Berlin-Heidelberg: Springer, 2008. 325-355
[36]
12 Debuchy R, Turgeon B G. Mating-type sturcture evolution and function in euascomycetes. In: Kües U, Fischer R, eds. Growth, Differentiation and Sexuality. Berlin Heidelberg: Springer-Verlag, 2006. 293-323
[37]
13 Staben C, Yanofsky C. Neurospora crassa a mating-type region. Proc Natl Acad Sci USA, 1990, 87: 4917-4921
[38]
14 Yokoyama E, Yamagishi K, Hara A. Structures of the mating-type loci of Cordyceps takaomontana. Appl Environ Microbiol, 2003, 69: 5019-5022
[39]
1 Mora C, Tittensor D P, Adl S, et al. How many species are there on Earth and in the ocean? PLoS Biol, 2011, 9: e1001127
[40]
2 Jones M D, Forn I, Gadelha C, et al. Discovery of novel intermediate forms redefines the fungal tree of life. Nature, 2011, 474: 200-203
[41]
3 Heitman J, Sun S, James T Y. Evolution of fungal sexual reproduction. Mycologia, 2013, 105: 1-27
[42]
4 K?ck U, P?ggeler S, Nowrousian M, et al. Sordaria macrospora, a model system for fungal development. In: Anke T, Weber D, eds. Physiology and Genetics. Berlin-Heidelberg: Springer, 2009. 17-39
[43]
5 Lee S C, Ni M, Li W, et al. The evolution of sex: a perspective from the fungal kingdom. Microbiol Mol Biol Rev, 2010, 74: 298-340
[44]
39 Xiong C H, Xia Y L, Zheng P, et al. Increasing oxidative stress tolerance and subculturing stability of Cordyceps militaris by overexpress of a glutathione peroxidase gene. Appl Microbiol Biotechnol, 2013, 97: 2009-2015
[45]
40 Yoshida Y, Hasunuma K. Reactive oxygen species affect photomorphogenesis in Neurospora crassa. J Biol Chem, 2004, 279: 6986-6993
[46]
41 Malagnac F, Lalucque H, Lepère G, et al. Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserine. Fungal Genet Biol, 2004, 41: 982-997
[47]
42 Lara-Ortiíz T, Rosas-Riveros H, Aguirre J. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol Microbiol, 2003, 50: 1241-1255
[48]
43 Th?n M, Al-Abdallah Q, Hortschansky P, et al. The thioredoxin system of the filamentous fungus Aspergillus nidulans: impact on development and oxidative stress response. J Biol Chem, 2007, 282: 27259-27269
[49]
44 Lew R R. How does a hypha grow? The biophysics of pressurized growth in fungi. Nat Rev Microbiol, 2011, 9: 509-518
[50]
45 Cavinder B, Trail F. Role of Fig1, a component of the low-affinity calcium uptake system, in growth and sexual development of filamentous fungi. Eukaryot Cell, 2012, 11: 978-988
[51]
46 Xiong C H, Xia Y L, Zheng P, et al. Developmental stage-specific gene expression profiling for a medicinal fungus Cordyceps militaris. Mycology, 2010, 1: 25-66
[52]
47 Kirk K E, Morris N R. The tubB α-tubulin gene is essential for sexual development in Aspergillus nidulans. Genes Dev, 1991, 5: 2014-2023
[53]
48 Lee J I, Choi J H, Park B C, et al. Differential expression of the chitin synthase genes of Aspergillus nidulans, chsA, chsB, and chsC, in response to developmental status and environmental factors. Fungal Genet Biol, 2004, 41: 635-646
[54]
49 Kurtz M B, Champe S P. Dominant spore color mutants of Aspergillus nidulans defective in germination and sexual development. J Bacteriol, 1981, 148: 629-638
[55]
50 Hermann T E, Kurtz M B, Champe S P. Laccase localized in hulle cells and cleistothecial primordial of Aspergillus nidulans. J Bacteriol, 1983, 154: 955-964
[56]
51 Peterson S W. Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia, 2008, 100: 205-226
[57]
52 Nygren K, Strandberg R, Wallberg A, et al. A comprehensive phylogeny of Neurospora reveals a link between reproductive mode and molecular evolution in fungi. Mol Phylogenet Evol, 2011, 59: 649-663
[58]
53 Yun S H, Berbee M L, Yoder O C, et al. Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors. Proc Natl Acad Sci USA, 1999, 96: 5592-5597
[59]
54 Hu X, Zhang Y J, Xiao G H, et al. Genome survey uncovers the secrets of sex and lifestyle in caterpillar fungus. Chinese Sci Bull, 2013, 58: 2846-2854