1 Bloemendal S, Kück U. Cell-to-cell communication in plants, animals, and fungi: a comparative review. Naturwissenschaften, 2012, 100: 3-19
[2]
2 Maule A J. Plasmodesmata: structure, function and biogenesis. Curr Opin Plant Biol, 2008, 11: 680-686
[3]
3 Maule A J, Benitez-Alfonso Y, Faulkner C. Plasmodesmata—membrane tunnels with attitude. Curr Opin Plant Biol, 2011, 14: 683-690
[4]
4 Wu S, Gallagher K L. Transcription factors on the move. Curr Opin Plant Biol, 2012, 15: 645-651
[5]
5 Haywood V, Kragler F, Lucas W J. Plasmodesmata: pathways for protein and ribonucleoprotein signaling. Plant Cell, 2002: S303-S325
[6]
6 Kim J Y. Regulation of short-distance transport of RNA and protein. Curr Opin Plant Biol, 2005, 8: 45-52
[7]
7 Hyun T K, Uddin M N, Rim Y, et al. Cell-to-cell trafficking of RNA and RNA silencing through plasmodesmata. Protoplasma, 2010, 248: 101-116
[8]
8 Crawford K M, Zambryski P C. Plasmodesmata signaling: many roles, sophisticated statutes. Curr Opin Plant Biol, 1999, 2: 382-387
[9]
9 Cilia M L, Jackson D. Plasmodesmata form and function. Curr Opin Cell Biol, 2004, 16: 500-506
[10]
10 Bell K, Oparka K. Imaging plasmodesmata. Protoplasma, 2010, 248: 9-25
[11]
11 Balasubramanian V, Vashisht D, Cletus J, et al. Plant β-1, 3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Biotechnol Lett, 2012, 34: 1983-1990
[12]
12 Zavaliev R, Ueki S, Epel B L, et al. Biology of callose (β-1, 3-glucan) turnover at plasmodesmata. Protoplasma, 2010, 248: 117-130
[13]
13 Hake S, Vollbrecht E, Freeling M. Cloning Knotted, the dominant morphological mutant in maize using Ds2 as a transposon tag. EMBO J, 1989, 8: 15-22
[14]
14 Kerstetter R, Vollbrecht E, Lowe B, et al. Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell, 1994, 6: 1877-1887
[15]
15 Lucas W J, Bouché-Pillon S, Jackson D P, et al. Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science, 1995, 270: 1980-1983
[16]
16 Kim J Y. Developmental regulation and significance of KNOX protein trafficking in Arabidopsis. Development, 2003, 130: 4351-4362
[17]
17 Petricka J J, Winter C M, Benfey P N. Control of Arabidopsis root development. Annu Rev Plant Biol, 2012, 63: 563-590
[18]
18 Helariutta Y, Fukaki H, Wysocka-Diller J, et al. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell, 2000, 101: 555-567
[19]
19 Nakajima K, Sena G, Nawy T. Intercellular movement of the putative transcription factor SHR in root patterning. Nature, 2001, 413: 307-311
[20]
20 Cui H, Levesque M P, Vernoux T, et al. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science, 2007, 316: 421-425
[21]
21 Gallagher K L, Benfey P N. Both the conserved GRAS domain and nuclear localization are required for SHORT-ROOT movement. Plant J, 2009, 57: 785-797
[22]
22 Gallagher K L, Paquette A J, Nakajima K, et al. Mechanisms regulating SHORT-ROOT intercellular movement. Curr Biol, 2004, 14: 1847-1851
[23]
23 Kim J Y, Rim Y, Wang J. A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking. Genes Dev, 2005, 19: 788-793
[24]
24 Xu X M, Wang J, Xuan Z, et al. Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function. Science, 2011, 333: 1141-1144
[25]
25 Scheres B. Plant patterning: TRY to inhibit your neighbors. Curr Biol, 2002, 12: 804-806
[26]
26 Tominaga R, Iwata M, Okada K, et al. Functional analysis of the epidermal-specific MYB genes CAPRICE and WEREWOLF in Arabidopsis. Plant Cell, 2007, 19: 2264-2277
[27]
27 Ishida T, Kurata T, Okada K, et al. A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol, 2008, 59: 365-386
[28]
28 Zhao H, Li X, Ma L. Basic helix-loop-helix transcription factors and epidermal cell fate determination in Arabidopsis. Plant Signal Behav, 2012, 7: 1556-1560
[29]
29 Chen X. Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol, 2009, 25: 21-44
[30]
30 Carlsbecker A, Lee J Y, Roberts C J, et al. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 2010, 465: 316-321
[31]
31 Chitwood D H, Timmermans M C P. Small RNAs are on the move. Nature, 2010, 467: 415-419
[32]
32 Miyashima S, Koi S, Hashimoto T, et al. Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root. Development, 2011, 138: 2303-2313
[33]
33 Liu Q, Yao X, Pi L, et al. The ARGONAUTE10 gene modulates shoot apical meristem maintenance and establishment of leaf polarity by repressing miR165/166 in Arabidopsis. Plant J, 2009, 58: 27-40
[34]
34 Zhu H, Hu F, Wang R, et al. Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell, 2011, 145: 242-256
[35]
35 Montgomery T A, Howell M D, Cuperus J T, et al. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell, 2008, 133: 128-141
[36]
36 Montgomery T A, Yoo S J, Fahlgren N, et al. AGO1-miR173 complex initiates phased siRNA formation in plants. Proc Natl Acad Sci USA, 2008, 105: 20055-20062
[37]
37 Chitwood D H, Nogueira F T S, Howell M D, et al. Pattern formation via small RNA mobility. Genes Dev, 2009, 23: 549-554
[38]
38 Husbands A Y, Chitwood D H, Plavskin Y, et al. Signals and prepatterns: new insights into organ polarity in plants. Genes Dev, 2009, 23: 1986-1997
[39]
39 Marin E, Jouannet V, Herz A, et al. miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell, 2010, 22: 1104-1117
[40]
40 Palauqui J C, Vaucheret H. Transgenes are dispensable for the RNA degradation step of cosuppression. Proc Natl Acad Sci USA, 1998, 95: 9675-9680
[41]
41 Himber C, Dunoyer P, Moissiard G, et al.Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J, 2003, 22: 4523-4533
[42]
42 Brosnan C A, Voinnet O. Cell-to-cell and long-distance siRNA movement in plants: mechanisms and biological implications. Curr Opin Plant Biol, 2011, 14: 580-587
[43]
43 de Felippes F F, Ott F, Weigel D. Comparative analysis of non-autonomous effects of tasiRNAs and miRNAs in Arabidopsis thaliana. Nucleic Acids Res, 2010, 39: 2880-2889