全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

植物细胞与细胞间物质转运及其对生长发育的调控

DOI: 10.1360/052013-308, PP. 1065-1071

Keywords: 非细胞自主性,蛋白质,RNA,运输,胞间连丝,植物发育

Full-Text   Cite this paper   Add to My Lib

Abstract:

细胞与细胞之间的物质运输和信号传递对于多细胞生物的生长发育非常重要.一些内源的大分子物质如蛋白质、核酸或核酸蛋白质复合体可以选择性地通过植物特有的亚细胞结构即胞间连丝(PD)在细胞之间运输.小分子物质主要以被动的形式在细胞间通过PD进行扩散.PD对蛋白质和核酸的运输具有选择性,这种运输受到严格调控.大分子物质在细胞间的运输对植物的生长和发育有极其重要的调控作用.KN1,STM,SHR,TRY和WER等转录因子在细胞之间的转运对于维持植物的茎尖分生组织、根尖分生组织和表皮细胞功能起重要作用.另外,某些小分子RNA也能够在植物细胞间进行选择性运输,并通过在不同细胞中降解或抑制靶mRNA的翻译来调节植物组织的生长发育.

References

[1]  1 Bloemendal S, Kück U. Cell-to-cell communication in plants, animals, and fungi: a comparative review. Naturwissenschaften, 2012, 100: 3-19
[2]  2 Maule A J. Plasmodesmata: structure, function and biogenesis. Curr Opin Plant Biol, 2008, 11: 680-686
[3]  3 Maule A J, Benitez-Alfonso Y, Faulkner C. Plasmodesmata—membrane tunnels with attitude. Curr Opin Plant Biol, 2011, 14: 683-690
[4]  4 Wu S, Gallagher K L. Transcription factors on the move. Curr Opin Plant Biol, 2012, 15: 645-651
[5]  5 Haywood V, Kragler F, Lucas W J. Plasmodesmata: pathways for protein and ribonucleoprotein signaling. Plant Cell, 2002: S303-S325
[6]  6 Kim J Y. Regulation of short-distance transport of RNA and protein. Curr Opin Plant Biol, 2005, 8: 45-52
[7]  7 Hyun T K, Uddin M N, Rim Y, et al. Cell-to-cell trafficking of RNA and RNA silencing through plasmodesmata. Protoplasma, 2010, 248: 101-116
[8]  8 Crawford K M, Zambryski P C. Plasmodesmata signaling: many roles, sophisticated statutes. Curr Opin Plant Biol, 1999, 2: 382-387
[9]  9 Cilia M L, Jackson D. Plasmodesmata form and function. Curr Opin Cell Biol, 2004, 16: 500-506
[10]  10 Bell K, Oparka K. Imaging plasmodesmata. Protoplasma, 2010, 248: 9-25
[11]  11 Balasubramanian V, Vashisht D, Cletus J, et al. Plant β-1, 3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Biotechnol Lett, 2012, 34: 1983-1990
[12]  12 Zavaliev R, Ueki S, Epel B L, et al. Biology of callose (β-1, 3-glucan) turnover at plasmodesmata. Protoplasma, 2010, 248: 117-130
[13]  13 Hake S, Vollbrecht E, Freeling M. Cloning Knotted, the dominant morphological mutant in maize using Ds2 as a transposon tag. EMBO J, 1989, 8: 15-22
[14]  14 Kerstetter R, Vollbrecht E, Lowe B, et al. Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell, 1994, 6: 1877-1887
[15]  15 Lucas W J, Bouché-Pillon S, Jackson D P, et al. Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science, 1995, 270: 1980-1983
[16]  16 Kim J Y. Developmental regulation and significance of KNOX protein trafficking in Arabidopsis. Development, 2003, 130: 4351-4362
[17]  17 Petricka J J, Winter C M, Benfey P N. Control of Arabidopsis root development. Annu Rev Plant Biol, 2012, 63: 563-590
[18]  18 Helariutta Y, Fukaki H, Wysocka-Diller J, et al. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell, 2000, 101: 555-567
[19]  19 Nakajima K, Sena G, Nawy T. Intercellular movement of the putative transcription factor SHR in root patterning. Nature, 2001, 413: 307-311
[20]  20 Cui H, Levesque M P, Vernoux T, et al. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science, 2007, 316: 421-425
[21]  21 Gallagher K L, Benfey P N. Both the conserved GRAS domain and nuclear localization are required for SHORT-ROOT movement. Plant J, 2009, 57: 785-797
[22]  22 Gallagher K L, Paquette A J, Nakajima K, et al. Mechanisms regulating SHORT-ROOT intercellular movement. Curr Biol, 2004, 14: 1847-1851
[23]  23 Kim J Y, Rim Y, Wang J. A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking. Genes Dev, 2005, 19: 788-793
[24]  24 Xu X M, Wang J, Xuan Z, et al. Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function. Science, 2011, 333: 1141-1144
[25]  25 Scheres B. Plant patterning: TRY to inhibit your neighbors. Curr Biol, 2002, 12: 804-806
[26]  26 Tominaga R, Iwata M, Okada K, et al. Functional analysis of the epidermal-specific MYB genes CAPRICE and WEREWOLF in Arabidopsis. Plant Cell, 2007, 19: 2264-2277
[27]  27 Ishida T, Kurata T, Okada K, et al. A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol, 2008, 59: 365-386
[28]  28 Zhao H, Li X, Ma L. Basic helix-loop-helix transcription factors and epidermal cell fate determination in Arabidopsis. Plant Signal Behav, 2012, 7: 1556-1560
[29]  29 Chen X. Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol, 2009, 25: 21-44
[30]  30 Carlsbecker A, Lee J Y, Roberts C J, et al. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 2010, 465: 316-321
[31]  31 Chitwood D H, Timmermans M C P. Small RNAs are on the move. Nature, 2010, 467: 415-419
[32]  32 Miyashima S, Koi S, Hashimoto T, et al. Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root. Development, 2011, 138: 2303-2313
[33]  33 Liu Q, Yao X, Pi L, et al. The ARGONAUTE10 gene modulates shoot apical meristem maintenance and establishment of leaf polarity by repressing miR165/166 in Arabidopsis. Plant J, 2009, 58: 27-40
[34]  34 Zhu H, Hu F, Wang R, et al. Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell, 2011, 145: 242-256
[35]  35 Montgomery T A, Howell M D, Cuperus J T, et al. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell, 2008, 133: 128-141
[36]  36 Montgomery T A, Yoo S J, Fahlgren N, et al. AGO1-miR173 complex initiates phased siRNA formation in plants. Proc Natl Acad Sci USA, 2008, 105: 20055-20062
[37]  37 Chitwood D H, Nogueira F T S, Howell M D, et al. Pattern formation via small RNA mobility. Genes Dev, 2009, 23: 549-554
[38]  38 Husbands A Y, Chitwood D H, Plavskin Y, et al. Signals and prepatterns: new insights into organ polarity in plants. Genes Dev, 2009, 23: 1986-1997
[39]  39 Marin E, Jouannet V, Herz A, et al. miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell, 2010, 22: 1104-1117
[40]  40 Palauqui J C, Vaucheret H. Transgenes are dispensable for the RNA degradation step of cosuppression. Proc Natl Acad Sci USA, 1998, 95: 9675-9680
[41]  41 Himber C, Dunoyer P, Moissiard G, et al.Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J, 2003, 22: 4523-4533
[42]  42 Brosnan C A, Voinnet O. Cell-to-cell and long-distance siRNA movement in plants: mechanisms and biological implications. Curr Opin Plant Biol, 2011, 14: 580-587
[43]  43 de Felippes F F, Ott F, Weigel D. Comparative analysis of non-autonomous effects of tasiRNAs and miRNAs in Arabidopsis thaliana. Nucleic Acids Res, 2010, 39: 2880-2889

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133