全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

水稻产量数量性状的遗传调控机制研究进展

DOI: 10.1360/052013-316, PP. 1007-1015

Keywords: 水稻,产量,数量性状,QTL,分子机制

Full-Text   Cite this paper   Add to My Lib

Abstract:

粒重、每穗粒数和每株穗数是决定水稻产量的三大要素,也是水稻育种改良的重点.这些性状都是遗传复杂的数量性状.近十年来,水稻数量性状遗传学领域取得了突破性的进展,成功克隆了一批控制水稻产量性状的数量性状位点(QTL).本文将简要介绍产量性状相关QTL的功能与作用机制.这些研究成果不仅有助于揭示产量性状形成的遗传基础,也将有力推动水稻分子设计育种的进程.

References

[1]  51 Oikawa T, Kyozuka J. Two-step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice. Plant Cell, 2009, 21: 1095-1108
[2]  52 Tabuchi H, Zhang Y, Hattori S, et al. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. Plant Cell, 2011, 23: 3276-3287
[3]  53 Wang Y, Li J. Branching in rice. Curr Opin Plant Biol, 2011, 14: 94-99
[4]  54 Kebrom T H, Spielmeyer W, Finnegan E J. Grasses provide new insights into regulation of shoot branching. Trends Plant Sci, 2013, 18: 41-48
[5]  55 Xie K, Wu C, Xiong L. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol, 2006, 142: 280-293
[6]  56 Li P, Wang Y, Qian Q, et al. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 2007, 17: 402-410
[7]  57 Yoshihara T, Iino M. Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1-dependent and -independent gravity signaling pathways. Plant Cell Physiol, 2007, 48: 678-688
[8]  58 Huang X, Kurata N, Wei X, et al. A map of rice genome variation reveals the origin of cultivated rice. Nature, 2012, 490: 497-501
[9]  59 Huang X, Zhao Y, Wei X, et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet, 2012, 44: 32-39
[10]  60 Huang X, Wei X, Sang T, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 42: 961-967
[11]  27 Tan L, Li X, Liu F, et al. Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet, 2008, 40: 1360-1364
[12]  28 Yoon D B, Kang K H, Kim H J, et al. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseongbyeo. Theor Appl Genet, 2006, 112: 1052-1062
[13]  29 Ying J Z, Gao J P, Shan J X, et al. Dissecting the genetic basis of extremely large grain shape in rice cultivar ‘JZ1560''. J Genet Genomics, 2012, 39: 325-333
[14]  30 Sakamoto T, Matsuoka M. Identifying and exploiting grain yield genes in rice. Curr Opin Plant Biol, 2008, 11: 209-214
[15]  31 Li Z, Pinson S R, Park W D, et al. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics, 1997, 145: 453-465
[16]  32 Yu S B, Li J X, Xu C G, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 1997, 94: 9226-9231
[17]  33 Xiao J, Li J, Grandillo S, et al. Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics, 1998, 150: 899-909
[18]  34 Xing Z, Tan F, Hua P, et al. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet, 2002, 105: 248-257
[19]  35 Li J X, Yu S B, Xu C G, et al. Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid. Theor Appl Genet, 2000, 101: 248-254
[20]  36 Thomson M J, Tai T H, McClung A M, et al. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet, 2003, 107: 479-493
[21]  37 Li J, Thomson M, McCouch S R. Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics, 2004, 168: 2187-2195
[22]  38 Mao H, Sun S, Yao J, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010, 107: 19579-19584
[23]  39 Ishimaru K. Identification of a locus increasing rice yield and physiological analysis of its function. Plant Physiol, 2003, 133: 1083-1090
[24]  40 Wang E, Wang J, Zhu X, et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008, 40: 1370-1374
[25]  41 Xing Y, Zhang Q. Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010, 61: 421-442
[26]  42 Gupta P K, Rustgi S, Kumar N. Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants. Genome, 2006, 49: 565-571
[27]  43 Huang X Y, Chao D Y, Gao J P, et al. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev, 2009, 23: 1805-1817
[28]  44 Li S, Zhao B, Yuan D, et al. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Natl Acad Sci USA, 2013, 110: 3167-3172
[29]  45 Kurakawa T, Ueda N, Maekawa M, et al. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature, 2007, 445: 652-655
[30]  46 Putterill J, Robson F, Lee K, et al. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 1995, 80: 847-857
[31]  47 Yano M, Katayose Y, Ashikari M, et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473-2484
[32]  48 Murakami M, Tago Y, Yamashino T, et al. Characterization of the rice circadian clock-associated pseudo-response regulators in Arabidopsis thaliana. Biosci Biotechnol Biochem, 2007, 71: 1107-1110
[33]  49 Li X, Qian Q, Fu Z, et al. Control of tillering in rice. Nature, 2003, 422: 618-621
[34]  50 Takeda T, Suwa Y, Suzuki M, et al. The OsTB1 gene negatively regulates lateral branching in rice. Plant J, 2003, 33: 513-520
[35]  1 Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science, 2010, 327: 818-822
[36]  2 Food and Agriculture Organisation(FAO) of the United Nations. Declaration of the World Summit on Food Security, Rome, 16-18 November 2009. http://www.fao.org/wsfs/wsfs-list-documents/en/
[37]  3 Godfray H C, Beddington J R, Crute I R, et al. Food security: the challenge of feeding 9 billion people. Science, 2010, 327: 812-818
[38]  4 Alston J M, Beddow J M, Pardey P G. Agricultural research, productivity, and food prices in the long run. Science, 2009, 325: 1209-1210
[39]  5 邹江石, 吕川根. 水稻超高产育种的实践与思考. 作物学报, 2005, 31: 254-258
[40]  6 Yamagishi M, Takeuchi Y, Kono I, et al. QTL analysis for panicle characteristics in temperate japonica rice. Euphytica, 2002, 128: 219-224
[41]  7 Fan C, Xing Y, Mao H, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164-1171
[42]  8 Qi P, Lin Y S, Song X J, et al. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res, 2012, 22: 1666-1680
[43]  9 Zhang X, Wang J, Huang J, et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA, 2012, 109: 21534-21539
[44]  10 Hu Z, He H, Zhang S, et al. A Kelch motif-containing serine/threonine protein phosphatase determines the large grain QTL trait in rice. J Integr Plant Biol, 2012, 54: 979-990
[45]  11 Ishimaru K, Hirotsu N, Madoka Y, et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707-711
[46]  12 Song X J, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623-630
[47]  13 Shomura A, Izawa T, Ebana K, et al. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008, 40: 1023-1028
[48]  14 Weng J, Gu S, Wan X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res, 2008, 18: 1199-1209
[49]  15 Li Y, Fan C, Xing Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011, 43: 1266-1269
[50]  16 Wang S, Wu K, Yuan Q, et al. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012, 44: 950-954
[51]  17 Ashikari M, Sakakibara H, Lin S, et al. Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741-745
[52]  18 Xue W, Xing Y, Weng X, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767
[53]  19 Huang X, Qian Q, Liu Z, et al. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009, 41: 494-497
[54]  20 Zhou Y, Zhu J, Li Z, et al. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics, 2009, 183: 315-324
[55]  21 Yan W H, Wang P, Chen H X, et al. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant, 2011, 4: 319-330
[56]  22 Yan W, Liu H, Zhou X, et al. Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice. Cell Res, 2013, 23: 969-971
[57]  23 Jiao Y, Wang Y, Xue D, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet, 2010, 42: 541-544
[58]  24 Miura K, Ikeda M, Matsubara A, et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet, 2010, 42: 545-549
[59]  25 Yu B, Lin Z, Li H, et al. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J, 2007, 52: 891-898
[60]  26 Jin J, Huang W, Gao J P, et al. Genetic control of rice plant architecture under domestication. Nat Genet, 2008, 40: 1365-1369

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133