全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

木薯分子育种中若干基本科学问题的思考与研究进展

DOI: 10.1360/052013-320, PP. 1082-1089

Keywords: 木薯(ManihotesculentaCrantz),分子育种,遗传改良,生物学问题,基因功能

Full-Text   Cite this paper   Add to My Lib

Abstract:

木薯作为全球重要的薯类作物,既是热带地区粮食安全的保障,也是重要的淀粉工业原材料,保障其稳产、高产、优质一直是育种家不变的研究主题.当前,木薯品种选育正处在从杂交育种转向分子育种的发展阶段,深入解析木薯特有的经济性状和生物学特点是利用生物技术进行遗传改良的基础.不同于谷物类作物,木薯光合同化物的转运和库源分配的调控机制必有其独特之处;同时,储藏根的“库容”直接影响其产量.作为热带作物,了解木薯对低温和干旱的响应可为改良其抗逆境能力提供理论依据.不同于其他薯类作物,木薯储藏根特有的“采后生理性变质”问题亟待解决,其发生和调控机制的解析对延长木薯货架期意义重大.随着分子生物学的发展,针对上述各方面的研究日益深入,不仅激发了感兴趣的公众对这些问题的认知和思考,也激励了科研人员不断努力寻找解析相关机制的方法,为最终通过分子育种手段改良木薯提供思路和技术方案,揭开木薯的层层“面纱”,推动木薯分子育种的发展.

References

[1]  1 Cock J H. Cassava: a basic energy source in the tropics. Science, 1982, 218: 755-762
[2]  2 Balagopalan C, Padmaja G, Nanda S K, et al. Cassava in Food, Feed, and Industry. Boca Raton: CRC Press, 1988
[3]  3 Ceballos H, Kulakow P, Hershey C. Cassava breeding: current status, bottlenecks and the potential of biotechnology tools. Trop Plant Biol, 2012, 5: 73-87
[4]  4 Liu J, Zheng Q, Ma Q, et al. Cassava genetic transformation and its application in breeding. J Integr Plant Biol, 2011, 53: 552-569
[5]  5 Sayre R, Beeching J, Cahoon E, et al. The BioCassava Plus Program: biofortification of cassava for sub-Saharan Africa. Annu Rev Plant Biol, 2011, 62: 251-272
[6]  6 Gaj T, Gersbach C A, Barbas Ⅲ C F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013, 31: 397-405
[7]  7 Edwards G E, Sheta E, Moore B D, et al. Photosynthetic characteristics of cassava (Manihot esculenta Crantz), a C3 species with chlorenchymatous bundle sheath cells. Plant Cell Physiol, 1990, 31: 1199-1206
[8]  8 Calatayud P A, Baron C H, Velasquez H, et al. Wild Manihot species do not possess C4 photosynthesis. Ann Bot, 2002, 89: 125-127
[9]  9 Angelov M N, Sun J, Byrd G T, et al. Novel characteristics of cassava, Manihot esculenta Crantz, a reputed C3-C4 intermediate photosynthesis species. Photosynth Res, 1993, 38: 61-72
[10]  10 Westhoff P, Gowik U. Evolution of C4 phosphoenolpyruvate carboxylase genes and proteins: a case study with the genus Flaveria. Ann Bot, 2004, 93: 13-23
[11]  11 El-Sharkawy M A. International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stresses in the tropics. Photosynthetica, 2006, 44: 481-512
[12]  12 张扬. 木薯光合生理、结构及相关基因表达特征的初步研究. 博士学位论文. 海口: 海南大学, 2012
[13]  13 Turgeon R, Wolf S. Phloem transport: cellular pathways and molecular trafficking. Ann Rev Plant Biol, 2009, 60: 207-221
[14]  14 Lalonde S, Tegeder M, Throne-Holst M, et al. Phloem loading and unloading of sugars and amino acids. Plant Cell Environ, 2003, 26: 37-56
[15]  15 Vaughn M W, Harrington G N, Bush D R. Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem. Proc Natl Acad Sci USA, 2002, 99: 10876-10880
[16]  16 Welbaum G E, Meinzer F C. Compartmentation of solutes and water in developing sugarcane stalk tissue. Plant Physiol, 1990, 93: 1147-1153
[17]  17 Bate N J, Niu X, Wang Y, et al. An invertase inhibitor from maize localizes to the embryo surrounding region during early kernel development. Plant Physiol, 2004, 134: 246-254
[18]  18 Jang J C, León P, Zhou L, et al. Hexokinase as a sugar sensor in higher plants. Plant Cell, 1997, 9: 5-19
[19]  19 Smeekens S, Rook F. Sugar sensing and sugar-mediated signal transduction in plants. Plant Physiol, 1997, 115: 7-13
[20]  20 Roitsch T. Source-sink regulation by sugar and stress. Curr Opin Plant Biol, 1999, 2: 198-206
[21]  21 Roitsch T, Ehness R. Regulation of source/sink relations by cytokinins. Plant Growth Regul, 2000, 32: 359-367
[22]  22 Zhang P, Wang W Q, Zhang G L, et al. Senescence-inducible expression of isopentenyl transferase extends leaf life, increases drought stress resistance and alters cytokinin metabolism in cassava. J Integr Plant Biol, 2010, 52: 653-669
[23]  23 Sojikul P, Kongsawadworakul P, Viboonjun U, et al. AFLP-based transcript profiling for cassava genome-wide expression analysis in the onset of storage root formation. Physiol Plant, 2010, 140: 189-198
[24]  24 Yang J, An D, Zhang P. Expression profiling of cassava storage roots reveals an active process of glycolysis/gluconeogenesis. J Integr Plant Biol, 2011, 53: 193-211
[25]  25 Saithong T, Rongsirikul O, Kalapanulak S, et al. Starch biosynthesis in cassava: a genome-based pathway reconstruction and its exploitation in data integration. BMC Syst Biol, 2013, 7: 75
[26]  26 CIAT. Cassava Program Annual Report. Cali: CIAT, 1994
[27]  27 Alves A C, Setter T L. Response of cassava leaf area expansion to water deficit: cell proliferation, cell expansion and delayed development. Ann Bot, 2004, 94: 605-613
[28]  28 El-Sharkawy M A, Cock J H. Response of cassava to water stress. Plant Soil, 1987, 100: 345-360
[29]  29 El-Sharkawy M A. Cassava biology and physiology. Plant Mol Biol, 2004, 56: 481-501
[30]  30 El-Sharkawy M A. Physiological characteristics of cassava tolerance to prolonged drought in the tropics: implications for breeding cultivars adapted to seasonally dry and semiarid environments. Brazil J Plant Physiol, 2007, 19: 257-286
[31]  31 Okogbenin E, Setter T L, Ferguson M, et al. Phenotypic approaches to drought in cassava: review. Front Physiol, 2013, 4: 93
[32]  32 Turyagyenda L F, Kizito E B, Ferguson M, et al. Physiological and molecular characterization of drought responses and identification of candidate tolerance genes in cassava. AoB Plants, 2013, 5: plt007
[33]  33 Xu J, Duan X, Yang J, et al. Coupled expression of Cu/Zn-superoxide dismutase and catalase in cassava improves tolerance against cold and drought stresses. Plant Signal Behav, 2013, 8: e24525
[34]  34 An D, Yang J, Zhang P. Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress. BMC Genomics, 2012, 13: 64
[35]  35 Plumbley R A, Rickard J E. Post-harvest deterioration of cassava. Tropical Sci, 1991, 31: 295-303
[36]  36 马秋香, 许佳, 乔爱民, 等. 木薯储藏根采后生理性变质研究进展. 热带亚热带植物学报, 2009, 17: 309-314
[37]  37 Wenham J E. Post-harvest deterioration of cassava: a biotechnology perspective. FAO Plant Production and Protection Paper 130, 1995
[38]  38 Reilly K, Bernal D, Cortes D F, et al. Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration. Plant Mol Biol, 2007, 64: 187-203
[39]  39 Owiti J, Grossmann J, Gehrig P, et al. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration. Plant J, 2011, 67: 145-156
[40]  40 Reilly K, Góomez-Váasquez R, Buschmann H, et al. Oxidative stress responses during cassava post-harvest physiological deterioration. Plant Mol Biol, 2004, 56: 625-641
[41]  41 Iyer S, Mattinson D S, Fellman J K. Study of the early events leading to cassava root postharvest deterioration. Trop Plant Biol, 2010, 3: 151-165
[42]  42 Zidenga T, Leyva-Guerrero E, Moon H, et al. Extending cassava root shelf life via reduction of reactive oxygen species production. Plant Physiol, 2012, 159: 1396-1407
[43]  43 Xu J, Duan X G, Yang J, et al. Enhanced reactive oxygen species scavenging by over-production of superoxide dismutase and catalase delays post-harvest physiological deterioration of cassava storage roots. Plant Physiol, 2013, 161: 1517-1528
[44]  44 Wheatley C, Schwabe W W. Scopoletin involvement in post-harvest physiological deterioration of cassava root (Manihot esculenta Crantz). J Exp Bot, 1985, 36: 783-791
[45]  45 Bayoumi S A, Rowan M G, Blagbrough I S, et al. Biosynthesis of scopoletin and scopolin in cassava roots during post-harvest physiological deterioration: the E-Z-isomerisation stage. Phytochemistry, 2008, 69: 2928-2936
[46]  46 Morante N, Sánchez T, Ceballos H, et al. Tolerance to postharvest physiological deterioration in cassava roots. Crop Sci, 2010, 50: 1333-1338

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133