1 Clouse S D. Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell, 2011, 23: 1219-1230
[2]
2 Vert G, Chory J. Downstream nuclear events in brassinosteroid signalling. Nature, 2006, 441: 96-100
[3]
3 Tang W, Kim T W, Wang Z Y, et al. BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science, 2008, 321: 557-560
[4]
4 Kim T W, Guan S, Wang Z Y. The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Mol Cell, 2011, 43: 561-571
[5]
5 He J X, Gendron J M, Sun Y, et al. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science, 2005, 307: 1634-1638
[6]
6 Yin Y, Vafeados D, Tao Y, et al. A new class of transcription factors mediates brassinosteroid regulated gene expression in Arabidopsis. Cell, 2005, 120: 249-259
[7]
7 Wang Z Y, Nakano T, Gendron J, et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell, 2002, 2: 505-513
[8]
8 He J X, Gendron J M, Wang Z Y, et al. The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci USA, 2002, 99: 10185-10190
[9]
9 Mora-Garcia S, Vert G, Yin Y, et al. Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev, 2004, 18: 448-460
[10]
10 Tang W, Yuan M, Wang R, et al. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nat Cell Biol, 2011, 13: 124-131
[11]
11 Mashiguchia K, Tanakaa K, Kasaharaa H, et al. The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA, 2011, 108: 18512-18517
[12]
12 Vernoux T, Brunoud G, Farcot E, et al. The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol, 2011, 7: 508
[13]
13 Calderon-Villalobos L I, Tan X, Zheng N, et al. Auxin perception——structural insights. Cold Spring Harb Perspect Biol, 2010, 2: a005546
[14]
14 Clouse S D, Sasse J M. BRASSINOSTEROIDS: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 427-451
[15]
15 Nemhauser J L, Mockler T C, Chory J. Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol, 2004, 2: E258
[16]
16 Vert G C L, Walcher, J Chory, et al. Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proc Natl Acad Sci USA, 2008, 105: 9829-9834
[17]
17 Takesue K, Shibaoka H. The cyclic reorientation of cortical microtubules in epidermal cells of azuki bean epicotyls: the role of actin filaments in the progression of the cycle. Planta, 1998, 205: 539-546
[18]
18 Takahashi T, Gasch A, Nishizawa N, et al. The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. Genes Dev, 1995, 9: 97-107
[19]
19 Nakaya M, Tsukaya H, Murakami N, et al. Brassinosteroids control the proliferation of leaf cells of Arabidopsis thaliana. Plant Cell Physiol, 2002, 43: 239-244
[20]
20 Hu Y, Bao F, Li J. Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. Plant J, 2000, 24: 693-701
[21]
21 Hacham Y, Holland N, Butterfield C, et al. Brassinosteroid perception in the epidermis controls root meristem size. Development, 2011, 138: 839-848
[22]
22 Gonzalez-Garcia M P, Vilarrasa-Blasi J, Zhiponova M, et al. Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development, 2011, 138: 849-859
[23]
23 Bao F, Shen J, Brady S R, et al. Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol, 2004, 134: 1624-1631
[24]
24 Li L, Xu J, Xu Z H, et al. Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant Cell, 2005, 17: 2738-2753
[25]
25 Kim T W, Lee S M, Joo S H, et al. Elongation and gravitropic responses of Arabidopsis roots are regulated by brassinolide and IAA. Plant Cell Environ, 2007, 30: 679-689
[26]
26 Nakamoto D, Ikeura A, Asami T, et al. Inhibition of brassinosteroid biosynthesis by either a dwarf4 mutation or a brassinosteroid biosynthesis inhibitor rescues defects in tropic responses of hypocotyls in the Arabidopsis mutant nonphototropic hypocotyl 4. Plant Physiol, 2006, 141: 456-464
[27]
27 Vandenbussche F, Suslov D, De Grauwe L, et al. The role of brassinosteroids in shoot gravitropism. Plant Physiol, 2011, 156: 1331-1336
[28]
28 Kozuka T, Kobayashi J, Horiguchi G, et al. Involvement of auxin and brassinosteroid in the regulation of petiole elongation under the shade. Plant Physiol, 2010, 153: 1608-1618
[29]
30 Goda H, Sawa S, Asami T, et al. Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol, 2004, 134: 1555-1573
[30]
31 Song L, Zhou X Y, Li L, et al. Genome-wide analysis revealed the complex regulatory network of brassinosteroid effects in photomorphogenesis. Mol Plant, 2009, 2: 755-772
[31]
32 Yin Y, Vafeados D, Tao Y, et al. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell, 2005, 120: 249-259
[32]
33 Friedrichsen D M, Nemhauser J, Muramitsu T, et al. Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics, 2002, 162: 1445-1456
[33]
34 Sun Y, Fan X Y, Cao D M, et al. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell, 2010, 19: 765-777
[34]
35 Yu X, Li L, Zola J, et al. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant J, 2011, 65: 634-646
[35]
36 Chandler J W, Cole M, Flier A, et al. BIM1, a bHLH protein involved in brassinosteroid signalling, controls Arabidopsis embryonic patterning via interaction with DORNROSCHEN and DORNROSCHEN-LIKE. Plant Mol Biol, 2009, 69: 57-68
[36]
37 Schlereth A, Moller B, Liu W, et al. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature, 2010, 464: 913-916
[37]
38 Wang H, Zhu Y, Fujioka S, et al. Regulation of Arabidopsis brassinosteroid signaling by atypical basic helix-loop-helix proteins. Plant Cell, 2009, 21: 3781-3791
[38]
39 Kang B, Wang H, Nam K H, et al. Activation-tagged suppressors of a weak brassinosteroid receptor mutant. Mol Plant, 2010, 3: 260-268
[39]
40 Zhou X Y, Song L, Xue H W. Brassinosteroids regulate the differential growth of Arabidopsis hypocotyls through auxin signaling components IAA19 and ARF7. Mol Plant, 2013, 6: 887-904
[40]
41 Kim H, Park P J, Hwang H J, et al. Brassinosteroid signals control expression of the AXR3/IAA17 gene in the cross-talk point with auxin in root development. Biosci Biotechnol Biochem, 2006, 70: 768-773
[41]
42 Scacchi E, Osmont K S, Beuchat J, et al. Dynamic, auxin-responsive plasma membrane-to-nucleus movement of Arabidopsis BRX. Development, 2009, 136: 2059-2067
[42]
43 Mouchel C F, Osmont K S, Hardtke C S. BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature, 2006, 443: 458-461
[43]
44 Chung Y, Maharjan P M, Lee O, et al. Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. Plant J, 2011, 66: 564-578
[44]
45 Yoshimitsu Y, Tanaka K, Fukuda W, et al. Transcription of DWARF4 plays a crucial role in auxin-regulated root elongation in addition to brassinosteroid homeostasis in Arabidopsis thaliana. PLoS One, 2011, 6: e23851
[45]
46 Vanneste S, Friml J. Auxin: a trigger for change in plant development. Cell, 2009, 136: 1005-1016
[46]
47 Souter M, Topping J, Lendsey K, et al. hydra Mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling. Plant Cell, 2002, 14: 1017-1031
[47]
48 Souter M A, Pullen M L, Lindsey K, et al. Rescue of defective auxin-mediated gene expression and root meristem function by inhibition of ethylene signaling in steroid biosynthesis mutants of Arabidopsis. Planta, 2004, 219: 773-783
[48]
49 Sabatini S, Beis D, Wolkenfelt H, et al. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell, 1999, 99: 463-472
[49]
50 Lanza M, Garcia-Ponce B, Castrillo G, et al. Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants. Dev Cell, 2012, 22: 1275-1285
[50]
29 Nakamura A, Higuchi K, Goda H, et al. Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol, 2003, 133: 1843-1853