26 Wang G, Dixon R A. Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. Proc Natl Acad Sci USA, 2009, 106: 9914-9919
[2]
27 Hsieh F L, Chang T H, Ko T P, et al. Structure and mechanism of an Arabidopsis medium/long-chain-length prenyl pyrophosphate synthase. Plant Physiol, 2011, 155: 1079-1090
[3]
28 Hsiao Y Y, Jeng M F, Tsai W C, et al. A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X)2-4D motif. Plant J, 2008, 55: 719-733
[4]
29 Schmidt A, Wachtler B, Temp U, et al. A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies. Plant Physiol, 152: 639-655
[5]
30 Vranova E, Coman D, Gruissem W. Structure and dynamics of the isoprenoid pathway network. Mol Plant, 2013, 5: 318-333
[6]
31 Degenhardt J, Kollner T G, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry, 2009, 70: 1621-1637
[7]
32 Keeling C I, Weisshaar S, Lin R P, et al. Functional plasticity of paralogous diterpene synthases involved in conifer defense. Proc Natl Acad Sci USA, 2008, 105: 1085-1090
[8]
33 Kollner T G, Schnee C, Gershenzon J, et al. The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes. Plant Cell, 2004, 16: 1115-1131
[9]
34 Aharoni A, Giri A P, Verstappen F W, et al. Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell, 2004, 16: 3110-3131
[10]
35 Bohlmann J, Meyer-Gauen G, Croteau R. Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA, 1998, 95: 4126-4133
[11]
36 Li J L, Luo X D, Zhao P J, et al. Post-modification enzymes involved in the biosynthesis of plant terpenoids. Acta Botanica Yunnanica, 2009, 31: 461-468
[12]
37 Guo J, Zhou Y J, Hillwig M L, et al. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proc Natl Acad Sci USA, 2013, 110: 12108-12113
[13]
38 Hayashi K, Kawaide H, Notomi M, et al. Identification and functional analysis of bifunctional ent-kaurene synthase from the moss Physcomitrella patens. FEBS Lett, 2006, 580: 6175-6181
[14]
39 Aubourg S, Lecharny A, Bohlmann J. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol Genet Genomics, 2002, 267: 730-745
[15]
40 Martin D M, Aubourg S, Schouwey M B, et al. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol, 2010, 10: 226
[16]
41 Yue Y C, Fan Y P. The terpene synthases and regulation of terpene metabolism in plants. Acta Hortic Sin, 2011, 38: 379-388
[17]
42 Zulak K G, Bohlmann J. Terpenoid biosynthesis and specialized vascular cells of conifer defense. J Integr Plant Biol, 2010, 52: 86-97
[18]
43 Chen F, Tholl D, Bohlmann J, et al. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J, 2011, 66: 212-229
[19]
44 Trapp S C, Croteau R B. Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics, 2001, 158: 811-832
[20]
45 Aubourg S, Lecharny A, Bohlmann J. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol Genet Genomics, 2002, 267: 730-745
[21]
46 Tholl D, Chen F, Petri J, et al. Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J, 2005, 42: 757-771
[22]
47 Sharkey T D, Yeh S, Wiberley A E, et al. Evolution of the isoprene biosynthetic pathway in kudzu. Plant Physiol, 2005, 137: 700-712
[23]
48 Schnee C, Kollner T G, Gershenzon J, et al. The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-beta-farnesene, (E)-nerolidol, and (E, E)-farnesol after herbivore damage. Plant Physiol, 2002, 130: 2049-2060
[24]
49 Cai Y, Jia J W, Crock J, et al. A cDNA clone for beta-caryophyllene synthase from Artemisia annua. Phytochemistry, 2002, 61: 523-529
[25]
50 Chen F, D''Auria J C, Tholl D, et al. An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant J, 2003, 36: 577-588
[26]
51 Mercke P, Kappers I F, Verstappen F W, et al. Combined transcript and metabolite analysis reveals genes involved in spider mite induced volatile formation in cucumber plants. Plant Physiol, 2004, 135: 2012-2024
[27]
52 Xu M, Hillwig M L, Prisic S, et al. Functional identification of rice syn-copalyl diphosphate synthase and its role in initiating biosynthesis of diterpenoid phytoalexin/allelopathic natural products. Plant J, 2004, 39: 309-318
[28]
53 Dudareva N, Cseke L, Blanc V M, et al. Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell, 1996, 8: 1137-1148
[29]
54 Back K, Chappell J. Identifying functional domains within terpene cyclases using a domain-swapping strategy. Proc Natl Acad Sci USA, 1996, 93: 6841-6845
[30]
55 Ait-Ali T, Swain S M, Reid J B, et al. The LS locus of pea encodes the gibberellin biosynthesis enzyme ent-kaurene synthase A. Plant J, 1997, 11: 443-454
[31]
56 Vogel B S, Wildung M R, Vogel G, et al. Abietadiene synthase from grand fir (Abies grandis). cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase involved in resin acid biosynthesis. J Biol Chem, 1996, 271: 23262-23268
[32]
57 Kawaide H, Imai R, Sassa T, et al. Ent-kaurene synthase from the fungus Phaeosphaeria sp. L487. cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase in fungal gibberellin biosynthesis. J Biol Chem, 1997, 272: 21706-21712
[33]
58 Prisic S, Xu M, Wilderman P R, et al. Rice contains two disparate ent-copalyl diphosphate synthases with distinct metabolic functions. Plant Physiol, 2004, 136: 4228-4236
[34]
59 Prosser I, Altug I G, Phillips A L, et al. Enantiospecific (+)- and (-)-germacrene D synthases, cloned from goldenrod, reveal a functionally active variant of the universal isoprenoid-biosynthesis aspartate-rich motif. Arch Biochem Biophys, 2004, 432: 136-144
[35]
60 Cane D E, Kang I. Aristolochene synthase: purification, molecular cloning, high-level expression in Escherichia coli, and characterization of the Aspergillus terreus cyclase. Arch Biochem Biophys, 2000, 376: 354-364
[36]
61 Christianson D W. Structural biology and chemistry of the terpenoid cyclases. Chem Rev, 2006, 106: 3412-3442
[37]
62 Green S, Squire C J, Nieuwenhuizen N J, et al. Defining the potassium binding region in an apple terpene synthase. J Biol Chem, 2009, 284: 8661-8669
[38]
63 Starks C M, Back K, Chappell J, et al. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science, 1997, 277: 1815-1820
[39]
64 Williams D C, McGarvey D J, Katahira E J, et al. Truncation of limonene synthase preprotein provides a fully active ''pseudomature'' form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. Biochemistry, 1998, 37: 12213-12220
[40]
65 Whittington D A, Wise M L, Urbansky M, et al. Bornyl diphosphate synthase: structure and strategy for carbocation manipulation by a terpenoid cyclase. Proc Natl Acad Sci USA, 2002, 99: 15375-15380
[41]
66 Lesburg C A, Zhai G, Cane D E, et al. Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology. Science, 1997, 277: 1820-1824
[42]
67 Li J X, Fang X, Zhao Q, et al. Rational engineering of plasticity residues of sesquiterpene synthases from Artemisia annua: product specificity and catalytic efficiency. Biochem J, 2013, 451: 417-426
[43]
68 Koksal M, Jin Y, Coates R M, et al. Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis. Nature, 2010, 469: 116-120
[44]
69 Wendt K U, Poralla K, Schulz G E. Structure and function of a squalene cyclase. Science, 1997, 277: 1811-1815
[45]
70 Shishova E Y, Di Costanzo L, Cane D E, et al. X-ray crystal structure of aristolochene synthase from Aspergillus terreus and evolution of templates for the cyclization of farnesyl diphosphate. Biochemistry, 2007, 46: 1941-1951
[46]
71 Hyatt D C, Croteau R. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis. Arch Biochem Biophys, 2005, 439: 222-233
[47]
72 Katoh S, Hyatt D, Croteau R. Altering product outcome in Abies grandis (-)-limonene synthase and (-)-limonene/(-)-alpha-pinene synthase by domain swapping and directed mutagenesis. Arch Biochem Biophys, 2004, 425: 65-76
[48]
73 Yoshikuni Y, Ferrin T E, Keasling J D. Designed divergent evolution of enzyme function. Nature, 2006, 440: 1078-1082
[49]
74 Greenhagen B T, O''Maille P E, Noel J P, et al. Identifying and manipulating structural determinates linking catalytic specificities in terpene synthases. Proc Natl Acad Sci USA, 2006, 103: 9826-9831
[50]
75 O''Maille P E, Malone A, Dellas N, et al. Quantitative exploration of the catalytic landscape separating divergent plant sesquiterpene synthases. Nat Chem Biol, 2008, 4: 617-623
[51]
76 Steele C L, Crock J, Bohlmann J, et al. Sesquiterpene synthases from grand fir (Abies grandis). Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of delta-selinene synthase and gamma-humulene synthase. J Biol Chem, 1998, 273: 2078-2089
[52]
78 Vedula L S, Rynkiewicz M J, Pyun H J, et al. Molecular recognition of the substrate diphosphate group governs product diversity in trichodiene synthase mutants. Biochemistry, 2005, 44: 6153-6163
[53]
79 Jorgensen K, Rasmussen A V, Morant M, et al. Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr Opin Plant Biol, 2005, 8: 280-291
[54]
80 Olsson M E, Olofsson L M, Lindahl A L, et al. Localization of enzymes of artemisinin biosynthesis to the apical cells of glandular secretory trichomes of Artemisia annua L. Phytochemistry, 2009, 70: 1123-1128
[55]
122 Chen J L, Fang H M, Ji Y P, et al. Artemisinin biosynthesis enhancement in transgenic Artemisia annua plants by downregulation of the beta-caryophyllene synthase gene. Planta Med, 2011, 77: 1759-1765
[56]
123 Hong G J, Hu W L, Li J X, et al. Increased accumulation of artemisinin and anthocyanins in Artemisia annua expressing the Arabidopsis blue light receptor CRY1. Plant Mol Biol Rep, 2009, 27: 334-341
[57]
124 Zhang L, Jing F, Li F, et al. Development of transgenic Artemisia annua (Chinese wormwood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing. Biotechnol Appl Biochem, 2009, 52: 199-207
[58]
125 Kappers I F, Aharoni A, van Herpen T W, et al. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science, 2005, 309: 2070-2072
[59]
126 Wu S, Schalk M, Clark A, et al. Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotechnol, 2006, 24: 1441-1447
[60]
127 Mao Y B, Lu S, Wang L J, et al. Biosynthesis of gossypol in cotton. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2006, 1: 1-12
[61]
128 Sunilkumar G, Campbell L M, Puckhaber L, et al. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA, 2006, 103: 18054-18059
[62]
129 Palle S R, Campbell L M, Pandeya D, et al. RNAi-mediated Ultra-low gossypol cottonseed trait: performance of transgenic lines under field conditions. Plant Biotechnol J, 2013, 11: 296-304
[63]
130 Ye X, Al-Babili S, Kloti A, et al. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 2000, 287: 303-305
[64]
131 Paine J A, Shipton C A, Chaggar S, et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol, 2005, 23: 482-487
[65]
132 Neta-Sharir I, Isaacson T, Lurie S, et al. Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell, 2005, 17: 1829-1838
[66]
133 Lu S, Van Eck J, Zhou X, et al. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell, 2006, 18: 3594-3605
[67]
134 Martin V J, Pitera D J, Withers S T, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol, 2003, 21: 796-802
[68]
135 Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440: 940-943
[69]
136 Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496: 528-532
[70]
137 Ajikumar P K, Xiao W H, Tyo K E J, et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science, 2010, 330: 70-74
[71]
138 Leonard E, Ajikumar P K, Thayer K, et al. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc Natl Acad Sci USA, 2010, 107: 13654-13659
[72]
77 Kollner T G, O''Maille P E, Gatto N, et al. Two pockets in the active site of maize sesquiterpene synthase TPS4 carry out sequential parts of the reaction scheme resulting in multiple products. Arch Biochem Biophys, 2006, 448: 83-92
[73]
1 Cragg G M, Newman D J. Nature: a vital source of leads for anticancer drug development. Phytochemistry Rev, 2009, 8: 313-331
[74]
2 Thulasiram H V, Erickson H K, Poulter C D. Chimeras of two isoprenoid synthases catalyze all four coupling reactions in isoprenoid biosynthesis. Science, 2007, 316: 73-76
[75]
3 Newman J D, Chappell J. Isoprenoid biosynthesis in plants: carbon partitioning within the cytoplasmic pathway. Crit Rev Biochem Mol Biol, 1999, 34: 95-106
[76]
4 Lichtenthaler H K. The 1-Deoxy-D-Xylulose-5-Phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 47-65
[77]
5 Disch A, Schwender J, Muller C, et al. Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem J, 1998, 333: 381-388
[78]
6 Schwender J, Seemann M, Lichtenthaler H K, et al. Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J, 1996, 316: 73-80
[79]
7 Schwender J, Gemunden C, Lichtenthaler H K. Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta, 2001, 212: 416-423
[80]
8 McAteer S, Coulson A, McLennan N, et al. The lytB gene of Escherichia coli is essential and specifies a product needed for isoprenoid biosynthesis. J Bacteriol, 2001, 183: 7403-7407
[81]
9 Kuzuyama T, Takagi M, Takahashi S, et al. Cloning and characterization of 1-deoxy-D-xylulose 5-phosphate synthase from Streptomyces sp. Strain CL190, which uses both the mevalonate and nonmevalonate pathways for isopentenyl diphosphate biosynthesis. J Bacteriol, 2000, 182: 891-897
[82]
10 Jomaa H, Wiesner J, Sanderbrand S, et al. Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science, 1999, 285: 1573-1576
[83]
11 Lichtenthaler H K. The non-mevalonate DOXP/MEP pathway (deoxyxylulose 5-phosphate/methylerythritol 4-phosphate pathway) of chloroplast isoprenoid biosynthesis. In: Rebeiz C A, Benning C, Bohnert H J, eds. The Chloroplast: Basics and Applications. Heidelberg: Springer, 2010. 95-118
[84]
12 Lichtenthaler H K, Zeidler J, Schwender J, et al. The non-mevalonate isoprenoid biosynthesis of plants as a test system for new herbicides and drugs against pathogenic bacteria and the malaria parasite. Z Naturforsch C, 2000, 55: 305-313
[85]
13 Dudareva N, Andersson S, Orlova I, et al. The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci USA, 2005, 102: 933-938
[86]
14 Hemmerlin A, Hoeffler J F, Meyer O, et al. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem, 2003, 278: 26666-26676
[87]
15 Bartram S, Jux A, Gleixner G, et al. Dynamic pathway allocation in early terpenoid biosynthesis of stress-induced lima bean leaves. Phytochemistry, 2006, 67: 1661-1672
[88]
16 Liang P H, Ko T P, Wang A H. Structure, mechanism and function of prenyltransferases. Eur J Biochem, 2002, 269: 3339-3354
[89]
17 McGarvey D J, Croteau R. Terpenoid metabolism. Plant Cell, 1995, 7: 1015-1026
[90]
18 Schilmiller A L, Schauvinhold I, Larson M, et al. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc Natl Acad Sci USA, 2009, 106: 10865-10870
[91]
19 Sallaud C, Rontein D, Onillon S, et al. A novel pathway for sesquiterpene biosynthesis from Z, Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites. Plant Cell, 2009, 21: 301-317
[92]
20 Akhtar T A, Matsuba Y, Schauvinhold I, et al. The tomato cis-prenyltransferase gene family. Plant J, 2013, 73: 640-652
[93]
21 Li S M, Hennig S, Heide L. Shikonin: a geranyl diphosphate-derived plant hemiterpenoid formed via the mevalonate pathway. Tetrahedron Lett, 1998, 39: 2721-2724
[94]
22 Okada K, Saito T, Nakagawa T, et al. Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol, 2000, 122: 1045-1056
[95]
23 Szkopinska A, Plochocka D. Farnesyl diphosphate synthase; regulation of product specificity. Acta Biochim Pol, 2005, 52: 45-55
[96]
24 Bouvier F, Suire C, d''Harlingue A, et al. Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. Plant J, 2000, 24: 241-252
[97]
25 Schmidt A, Gershenzon J. Cloning and characterization of two different types of geranyl diphosphate synthases from Norway spruce (Picea abies). Phytochemistry, 2008, 69: 49-57
[98]
81 Lewinsohn E, Dudai N, Tadmor Y, et al. Histochemical localization of citral accumulation in lemongrass leaves (Cymbopogon citratus (DC.) Stapf., Poaceae). Annals of Botany, 1998, 81: 35-39
[99]
82 Gershenzon J, McConkey M E, Croteau R B. Regulation of monoterpene accumulation in leaves of peppermint. Plant Physiol, 2000, 122: 205-214
[100]
83 Turner G W, Gershenzon J, Croteau R B. Distribution of peltate glandular trichomes on developing leaves of peppermint. Plant Physiol, 2000, 124: 655-664
[101]
84 Dudareva N, Martin D, Kish C M, et al. (E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell, 2003, 15: 1227-1241
[102]
85 Lu S, Xu R, Jia J W, et al. Cloning and functional characterization of a beta-pinene synthase from Artemisia annua that shows a circadian pattern of expression. Plant Physiol, 2002, 130: 477-486
[103]
86 Loughrin J H, Manukian A, Heath R R, et al. Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plant. Proc Natl Acad Sci USA, 1994, 91: 11836-11840
[104]
87 Yu F, Utsumi R. Diversity, regulation, and genetic manipulation of plant mono- and sesquiterpenoid biosynthesis. Cell Mol Life Sci, 2009, 66: 3043-3052
[105]
88 Unsicker S B, Kunert G, Gershenzon J. Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr Opin Plant Biol, 2009, 12: 479-485
[106]
89 Kollner T G, Held M, Lenk C, et al. A maize (E)-beta-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell, 2008, 20: 482-494
[107]
90 Schnee C, Kollner T G, Held M, et al. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci USA, 2006, 103: 1129-1134
[108]
91 Toong Y C, Schooley D A, Baker F C. Isolation of insect juvenile hormone III from a plant. Nature, 1988, 333: 170-171
[109]
92 Ton J, D''Alessandro M, Jourdie V, et al. Priming by airborne signals boosts direct and indirect resistance in maize. Plant J, 2007, 49: 16-26
[110]
93 Gatehouse J A. Plant resistance towards insect herbivores: a dynamic interaction. New Phytol, 2002, 156: 145-169
[111]
94 Ozawa R, Arimura G, Takabayashi J, et al. Involvement of jasmonate- and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol, 2000, 41: 391-398
[112]
95 Leitner M, Boland W, Mithofer A. Direct and indirect defences induced by piercing-sucking and chewing herbivores in Medicago truncatula. New Phytol, 2005, 167: 597-606
[113]
96 Arimura G, Garms S, Maffei M, et al. Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling. Planta, 2008, 227: 453-464
[114]
97 Gouinguene S P, Turlings T C. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol, 2002, 129: 1296-1307
[115]
98 Rios-Estepa R, Turner G W, Lee J M, et al. A systems biology approach identifies the biochemical mechanisms regulating monoterpenoid essential oil composition in peppermint. Proc Natl Acad Sci USA, 2008, 105: 2818-2823
[116]
99 Xu Y H, Wang J W, Wang S, et al. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiol, 2004, 135: 507-515
[117]
100 Ma D, Pu G, Lei C, et al. Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4, 11-diene synthase gene, a key gene of artemisinin biosynthesis. Plant Cell Physiol, 2009, 50: 2146-2161
[118]
101 Yu Z X, Li J X, Yang C Q, et al. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol Plant, 2012, 5: 353-365
[119]
102 Lu X, Jiang W, Zhang L, et al. AaERF1 positively regulates the resistance to Botrytis cinerea in Artemisia annua. PLoS One, 2013, 8: e57657
[120]
103 Lu X, Zhang L, Zhang F, et al. AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol, 2013, 198: 1191-1202
[121]
104 Hong G J, Xue X Y, Mao Y B, et al. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell, 2012, 24: 2635-2648
[122]
105 Devarenne T P, Shin D H, Back K, et al. Molecular characterization of tobacco squalene synthase and regulation in response to fungal elicitor. Arch Biochem Biophys, 1998, 349: 205-215
[123]
106 Denbow C J, Lang S, Cramer C L. The N-terminal domain of tomato 3-hydroxy-3-methylglutaryl-CoA reductases. Sequence, microsomal targeting, and glycosylation. J Biol Chem, 1996, 271: 9710-9715
[124]
107 Tholl D, Kish C M, Orlova I, et al. Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases. Plant Cell, 2004, 16: 977-992
[125]
108 Guevara-Garcia A, San Roman C, Arroyo A, et al. Characterization of the Arabidopsis clb6 mutant illustrates the importance of posttranscriptional regulation of the methyl-D-erythritol 4-phosphate pathway. Plant Cell, 2005, 17: 628-643
[126]
109 Frey M, Chomet P, Glawischnig E, et al. Analysis of a chemical plant defense mechanism in grasses. Science, 1997, 277: 696-699
[127]
111 Takos A M, Knudsen C, Lai D, et al. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway. Plant J, 2011, 68: 273-286
[128]
112 Winzer T, Gazda V, He Z, et al. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science, 2012, 336: 1704-1708
[129]
113 Field B, Osbourn A E. Metabolic diversification-independent assembly of operon-like gene clusters in different plants. Science, 2008, 320: 543-547
[130]
114 Wang Q, Hillwig M L, Okada K, et al. Characterization of CYP76M5-8 indicates metabolic plasticity within a plant biosynthetic gene cluster. J Biol Chem, 2012, 287: 6159-6168
[131]
115 Wu Y, Hillwig M L, Wang Q, et al. Parsing a multifunctional biosynthetic gene cluster from rice: biochemical characterization of CYP71Z6 & 7. FEBS Lett, 2011, 585: 3446-3451
[132]
116 Falara V, Akhtar T A, Nguyen T T, et al. The tomato terpene synthase gene family. Plant Physiol, 2011, 157: 770-789
[133]
117 Matsuba Y, Nguyen T T, Wiegert K, et al. Evolution of a complex locus for terpene biosynthesis in Solanum. Plant Cell, 2013
[134]
118 Osbourn A. Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends Genet, 2010, 26: 449-457
[135]
119 Cheng A X, Xiang C Y, Li J X, et al. The rice (E)-beta-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. Phytochemistry, 2007, 68: 1632-1641
[136]
120 Chen D, Ye H, Li G. Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua L. transgenic plants via Agrobacterium tumefaciens-mediated transformation. Plant Sci, 2000, 155: 179-185
[137]
121 Yang R Y, Feng L L, Yang X Q, et al. Quantitative transcript profiling reveals down-regulation of a sterol pathway relevant gene and overexpression of artemisinin biogenetic genes in transgenic Artemisia annua plants. Planta Med, 2008, 74: 1510-1516
[138]
110 Qi X, Bakht S, Leggett M, et al. A gene cluster for secondary metabolism in oat: implications for the evolution of metabolic diversity in plants. Proc Natl Acad Sci USA, 2004, 101: 8233-8238