19 Mouraux A, Iannetti G. Across-trial averaging of event-related EEG responses and beyond. Magn Reson Imaging, 2008, 26: 1041-1054
[2]
20 Peng W, Hu L, Zhang Z, et al. Causality in the association between P300 and alpha event-related desynchronization. PLoS ONE, 2012, 7: e34163
[3]
21 Hu L, Mouraux A, Hu Y, et al. A novel approach for enhancing the signal-to-noise ratio and detecting automatically event-related potentials (ERPs) in single trials. NeuroImage, 2010, 50: 99-111
[4]
22 Zhang Z, Hu L, Hung Y, et al. Gamma-band oscillations in the primary somatosensory cortex—a direct and obligatory correlate of subjective pain intensity. J Neurosci, 2012, 32: 7429-7438
[5]
23 Cavanagh J F, Cohen M X, Allen J J B. Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring. J Neurosci, 2009, 29: 98-105
[6]
24 Cavanagh J F, Frank M J, Klein T J, et al. Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. NeuroImage, 2010, 49: 3198-3209
26 Cohen M X, Ridderinkhof K R, Haupt S, et al. Medial frontal cortex and response conflict: evidence from human intracranial EEG and medial frontal cortex lesion. Brain Res, 2008, 1238: 127-142
[9]
27 Hanslmayr S, Past?tter B, B?uml K H, et al. The electrophysiological dynamics of interference during the Stroop task. J Cogn Neurosci, 2008, 20: 215-225
[10]
28 Raghavachari S, Lisman J E, Tully M, et al. Theta oscillations in human cortex during a working-memory task: evidence for local generators. J Neurophysiol, 2006, 95: 1630-1638
[11]
29 Tsujimoto T, Shimazu H, Isomura Y. Direct recording of theta oscillations in primate prefrontal and anterior cingulate cortices. J Neurophysiol, 2006, 95: 2987-3000
[12]
30 Wang C, Ulbert I, Schomer D L, et al. Responses of human anterior cingulate cortex microdomains to error detection, conflict monitoring, stimulus-response mapping, familiarity, and orienting. J Neurosci, 2005, 25: 604-613
[13]
31 Womelsdorf T, Schoffelen J M, Oostenveld R, et al. Modulation of neuronal interactions through neuronal synchronization. Science, 2007, 316: 1609-1612
[14]
32 Luu P, Tucker D M, Makeig S. Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation. Clin Neurophysiol, 2004, 115: 1821-1835
[15]
33 Trujillo L T, Allen J J B. Theta EEG dynamics of the error-related negativity. Clin Neurophysiol, 2007, 118: 645-668
[16]
34 Nigbur R, Ivanova G, Stürmer B. Theta power as a marker for cognitive interference. Clin Neurophysiol, 2011, 122: 2185-2194
[17]
35 Dockree P M, Kelly S P, Foxe J J, et al. Optimal sustained attention is linked to the spectral content of background EEG activity: greater ongoing tonic alpha (~ 10 Hz) power supports successful phasic goal activation. Eur J Neurosci, 2007, 25: 900-907
[18]
36 Macdonald J S P, Mathan S, Yeung N. Trial-by-trial variations in subjective attentional state are reflected in ongoing prestimulus EEG alpha oscillations. Front Psychol, 2011, 2: 82
[19]
37 Sadaghiani S, Scheeringa R, Lehongre K, et al. Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study. J Neurophysiol, 2010, 30: 10243-10250
[20]
38 Foxe J J, Simpson G V, Ahlfors S P. Parieto-occipita lapproximately 10 Hz activity reflects anticipatory state of visual attention mechanisms. Neuroreport, 1998, 9: 3929-3933
[21]
39 Carp J, Compton R J. Alpha power is influenced by performance errors. Psychophysiology, 2009, 46: 336-343
[22]
40 Mathewson K E, Lleras A, Beck D M, et al. Pulsed out of awareness: EEG alpha oscillations represent a pulsed-inhibition of ongoing cortical processing. Front Psychol, 2011, 2: 99
[23]
41 Compton R J, Arnstein D, Freedman G, et al. Cognitive control in the intertrial interval: evidence from EEG alpha power. Psychophysiology, 2011, 48: 583-590
[24]
42 Clayson P E, Larson M J. Conflict adaptation and sequential trial effects: support for the conflict monitoring theory. Neuropsychologia, 2011, 49: 1953-1961
[25]
43 Larson M J, Clayson P E, Baldwin S A. Performance monitoring following conflict: internal adjustments in cognitive control? Neuropsychologia, 2012, 50: 426-433
[26]
44 Larson M J, Kaufman D A S, Perlstein W M. Neural time course of conflict adaptation effects on the Stroop task. Neuropsychologia,
[27]
2009, 47: 663-670
[28]
45 Tang D, Hu L, Li H, et al. The neural dynamics of conflict adaptation within a look-to-do transition. PLoS ONE, 2013, 8: e57912
49 Tang D, Hu L, Chen A. The Neural oscillations of conflict adaptation in the human frontal region. Biol Psychol, 2013, 93: 364-372
[33]
50 Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods, 2004, 134: 9-21
[34]
51 Jung T P, Makeig S, Westerfield M, et al. Analysis and visualization of single-trial event-related potentials. Hum Brain Mapp, 2001, 14: 166-185
[35]
52 Makeig S, Jung T P, Bell A J, et al. Blind separation of auditory event-related brain responses into independent components. Proc Natl Acad Sci USA, 1997, 94: 10979-10984
[36]
53 Pfurtscheller G, Lopes da Silva F H. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol, 1999, 110: 1842-1857
[37]
1 Botvinick M M, Braver T S, Barch D M, et al. Conflict monitoring and cognitive control. Psychol Rev, 2001, 108: 624-652
[38]
2 Botvinick M M, Nystrom L E, Fissell K, et al. Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 1999, 402: 179-180
[39]
3 Gratton G, Coles M G, Donchin E. Optimizing the use of information: strategic control of activation of responses. J Exp Psychol Gen, 1992, 121: 480-506
[40]
4 Carter C S, van Veen V. Anterior cingulate cortex and conflict detection: an update of theory and data. Cogn Affect Behav Neurosci, 2007, 7: 367-379
[41]
5 Egner T. Congruency sequence effects and cognitive control. Cogn Affect Behav Neurosci, 2007, 7: 380-390
[42]
6 Egner T, Hirsch J. Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nat Neurosci, 2005, 8: 1784-1790
[43]
7 Eriksen B A, Eriksen C W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys, 1974, 16: 143-149
[44]
8 Lamers M J M, Roelofs A. Attentional control adjustments in Eriksen and Stroop task performance can be independent of response conflict. Q J Exp Psychol, 2011, 64: 1056-1081
[45]
9 Nieuwenhuis S, Stins J F, Posthuma D, et al. Accounting for sequential trial effects in the flanker task: conflict adaptation or associative priming? Mem Cognit, 2006, 34: 1260-1272
[46]
10 Botvinick M M, Cohen J D, Carter C S. Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn Sci, 2004, 8: 539-546
[47]
11 Kerns J G, Cohen J D, MacDonald A W, et al. Anterior cingulate conflict monitoring and adjustments in control. Science, 2004, 303: 1023-1026
[48]
12 Egner T, Etkin A, Gale S, et al. Dissociable neural systems resolve conflict from emotional versus nonemotional distracters. Cereb Cortex, 2008, 18: 1475-1484
[49]
13 Egner T, Hirsch J. The neural correlates and functional integration of cognitive control in a Stroop task. NeuroImage, 2005, 24: 539-547
[50]
14 Tiesinga P, Fellous J M, Sejnowski T J. Regulation of spike timing in visual cortical circuits. Nat Rev Neurosci, 2008, 9: 97-107
[51]
15 Wang X J. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev, 2010, 90: 1195-1268
[52]
16 Cohen M X, Cavanagh J F. Single-trial regression elucidates the role of prefrontal theta oscillations in response conflict. Front Psychol, 2011, 2: 30
[53]
17 Cohen M X. It''s about Time. Front Hum Neurosci, 2011, 5: 2
54 Durka P J, Zygierewicz J, Klekowicz H, et al. On the statistical significance of event-related EEG desynchronization and synchronization in the time-frequency plane. IEEE Trans Biomed Eng, 2004, 51: 1167-1175
[56]
55 Maris E, Oostenveld R. Nonparametric statistical testing of EEG-and MEG-data. J Neurosci Methods, 2007, 164: 177-190
[57]
56 Hu L, Zhao C, Li H, et al. Mismatch responses evoked by nociceptive stimuli. Psychophysiology, 2013, 50: 158-173
[58]
57 Capotosto P, Babiloni C, Romani G L, et al. Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms. J Neurosci, 2009, 29: 5863-5872
[59]
58 Sauseng P, Klimesch W, Stadler W, et al. A shift of visual spatial attention is selectively associated with human EEG alpha activity. Eur J Neurosci, 2005, 22: 2917-2926
[60]
59 Mathewson K E, Gratton G, Fabiani M, et al. To see or not to see: prestimulus α phase predicts visual awareness. J Neurosci, 2009, 29: 2725-2732
[61]
60 Barch D M, Braver T S, Akbudak E, et al. Anterior cingulate cortex and response conflict: effects of response modality and processing domain. Cereb Cortex, 2001, 11: 837-848
[62]
61 Roche R A, Dockree P M, Garavan H, et al. EEG alpha power changes reflect response inhibition deficits after traumatic brain injury (TBI) in humans. Neurosci Lett, 2004, 362: 1-5
[63]
62 Sauseng P, Hoppe J, Klimesch W, et al. Dissociation of sustained attention from central executive functions: local activity and interregional connectivity in the theta range. Eur J Neurosci, 2007, 25: 587-593
[64]
63 Nigbur R, Cohen M X, Ridderinkhof K R, et al. Theta dynamics reveal domain-specific control over stimulus and response conflict. J Cogn Neurosci, 2012, 24: 1264-1274