1 Yde C W, Clausen M P, Bennetzen M V, et al. The antipsychotic drug chlorpromazine enhances the cytotoxic effect of tamoxifen in tamoxifen-sensitive and tamoxifen-resistant human breast cancer cells. Anticancer Drugs, 2009, 20: 723-735
[2]
2 Eriksson A, Yachnin J, Lewensohn R, et al. DNA-dependent protein kinase is inhibited by trifluoperazine. Biochem Biophys Res Commun, 2001, 283: 726-731
4 Lee M S, Johansen L, Zhang Y, et al. The novel combination of chlorpromazine and pentamidine exerts synergistic antiproliferative effects through dual mitotic action. Cancer Res, 2007, 67: 11359-11367
[5]
5 Wiklund E D, Catts V S, Catts S V, et al. Cytotoxic effects of antipsychotic drugs implicate cholesterol homeostasis as a novel chemotherapeutic target. Int J Cancer, 2010, 126: 28-40
[6]
6 Zhelev Z, Ohba H, Bakalova R, et al. Phenothiazines suppress proliferation and induce apoptosis in cultured leukemic cells without any influence on the viability of normal lymphocytes. Phenothiazines and leukemia. Cancer Chemother Pharmacol, 2004, 53: 267-275
[7]
7 Fond G, Macgregor A, Attal J, et al. Antipsychotic drugs: pro-cancer or anti-cancer? A systematic review. Med Hypotheses, 2012, 79: 38-42
[8]
8 Burgess D J. Anticancer drugs: antipsychotic to anticancer agent? Nat Rev Drug Discov, 2012, 11: 516
[9]
9 Barrett T, Suzek T O, Troup D B, et al. NCBI GEO: mining millions of expression profiles—database and tools. Nucleic Acids Res, 2005, 33: D562-D566
[10]
10 Shi Q, Pavey E S, Carter R E. Bonferroni-based correction factor for multiple, correlated endpoints. Pharm Stat, 2012, 11: 300-309
[11]
11 Orlov Y L, Zhou J, Lipovich L, et al. Quality assessment of the Affymetrix U133A&B probesets by target sequence mapping and expression data analysis. In Silico Biol, 2007, 7: 241-260
[12]
12 Lamb J, Crawford E D, Peck D, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 2006, 313: 1929-1935
[13]
13 Luo H, Chen J, Shi L, et al. DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical-protein interactome. Nucleic Acids Res, 2011, 39: W492-W498
[14]
14 Dennis G Jr, Sherman B T, Hosack D A, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol, 2003, 4: P3
[15]
15 Warde-Farley D, Donaldson S L, Comes O, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res, 2010, 38: W214-W220
[16]
16 Hu Z, Snitkin E S, Delisi C. VisANT: an integrative framework for networks in systems biology. Brief Bioinform, 2008, 9: 317-325
[17]
17 Hu Z, Mellor J, Wu J, et al. VisANT: data-integrating visual framework for biological networks and modules. Nucleic Acids Res, 2005, 33: W352-W357
[18]
18 Hu Z, Mellor J, Wu J, et al. VisANT: an online visualization and analysis tool for biological interaction data. BMC Bioinformatics, 2004, 5: 17
[19]
19 Ogino S, Shima K, Baba Y, et al. Colorectal cancer expression of peroxisome proliferator-activated receptor gamma (PPARG, PPARgamma) is associated with good prognosis. Gastroenterology, 2009, 136: 1242-1250
[20]
20 Girnun G. PPARG: a new independent marker for colorectal cancer survival. Gastroenterology, 2009, 136: 1157 1160
[21]
21 Clarke N, Germain P, Altucci L, et al. Retinoids: potential in cancer prevention and therapy. Expert Rev Mol Med, 2004, 6: 1-23
[22]
22 Papi A, Rocchi P, Ferreri A M, et al. RXRgamma and PPARgamma ligands in combination to inhibit proliferation and invasiveness in colon cancer cells. Cancer Lett, 2010, 297: 65-74
[23]
23 Chang J T, Nevins J R. GATHER: a systems approach to interpreting genomic signatures. Bioinformatics, 2006, 22: 2926-2933