11 Khizhniak S V, Prokhorova A A, Stepanova L I, et al. Functioning of the antioxidant system in epithelial cells of small intestine under the influence of ionizing radiation of low dose rate. Radiats Biol Radioecol, 2011, 51: 684-688
[2]
12 Hauer-Jensen M, Wang J, Boerma M, et al. Radiation damage to the gastrointestinal tract: mechanisms, diagnosis, and management. Curr Opin Support Palliat Care, 2007, 1: 23-29
[3]
13 Vyas D, Robertson C M, Stromberg P E, et al. Epithelial apoptosis in mechanistically distinct methods of injury in the murine small intestine. Histol Histopathol, 2007, 22: 623-630
[4]
14 Freeman S L, MacNaughton W K. Nitric oxide inhibitable isoforms of adenylate cyclase mediate epithelial secretory dysfunction following exposure to ionising radiation. Gut, 2004, 53: 214-221
[5]
15 Przemeck S M, Duckworth C A, Pritchard D M. Radiation-induced gastric epithelial apoptosis occurs in the proliferative zone and is regulated by p53, bak, bax, and bcl-2. Am J Physiol Gastrointest Liver Physiol, 2007, 292: G620-G627
[6]
16 Zhang L, Sun W, Wang J, et al. Mitigation effect of an FGF-2 peptide on acute gastrointestinal syndrome after high-dose ionizing radiation. Int J Radiat Oncol Biol Phys, 2010, 77: 261-268
[7]
17 Shadad A K, Sullivan F J, Martin J D, et al. Gastrointestinal radiation injury: symptoms, risk factors and mechanisms. World J Gastroenterol, 2013, 19: 185-198
[8]
18 Bonnaud S, Niaudet C, Legoux F, et al. Sphingosine-1-phosphate activates the AKT pathway to protect small intestines from radiation-induced endothelial apoptosis. Cancer Res, 2010, 70: 9905-9915
[9]
19 Rotolo J A, Maj J G, Feldman R, et al. Bax and Bak do not exhibit functional redundancy in mediating radiation-induced endothelial apoptosis in the intestinal mucosa. Int J Radiat Oncol Biol Phys, 2008, 70: 804-815
[10]
20 Marshman E, Ottewell P D, Potten C S, et al. Caspase activation during spontaneous and radiation-induced apoptosis in the murine intestine. J Pathol, 2001, 195: 285-292
[11]
21 Merritt A J, Allen T D, Potten C S, et al. Apoptosis in small intestinal epithelial from p53-null mice: evidence for a delayed, p53-independent G2/M-associated cell death after gamma-irradiation. Oncogene, 1997, 14: 2759-2766
[12]
22 Qiu W, Leibowitz B, Zhang L, et al. Growth factors protect intestinal stem cells from radiation-induced apoptosis by suppressing PUMA through the PI3K/AKT/p53 axis. Oncogene, 2010, 29: 1622-1632
[13]
23 Sun Q, Ming L, Thomas S M, et al. PUMA mediates EGFR tyrosine kinase inhibitor-induced apoptosis in head and neck cancer cells. Oncogene, 2009, 28: 2348-2357
[14]
24 Fei P, El-Deiry W S. P53 and radiation responses. Oncogene, 2003, 22: 5774-5783
[15]
25 An M J, Cheon J H, Kim S W, et al. Bovine colostrum inhibits nuclear factor kappaB-mediated proinflammatory cytokine expression in intestinal epithelial cells. Nutr Res, 2009, 29: 275-280
[16]
26 Lysy P A, Campard D, Smets F, et al. Persistence of a chimerical phenotype after hepatocyte differentiation of human bone marrow mesenchymal stem cells. Cell Prolif, 2008, 41: 36-58
[17]
27 Reger R L, Tucker A H, Wolfe M R. Differentiation and characterization of human MSCs. In: Prockop D J, Phinney D G, Bunnell B A, eds. Mesenchymal Stem Cells: Methods and Protocols. Totowa: Humana Press, 2008. 93-107
29 Tekkatte C, Vidyasekar P, Kapadia N K, et al. Enhancement of adipogenic and osteogenic differentiation of human bone-marrow-derived mesenchymal stem cells by supplementation with umbilical cord blood serum. Cell Tissue Res, 2012, 347: 383-395
[20]
30 Tao X R, Li W L, Su J, et al. Clonal mesenchymal stem cells derived from human bone marrow can differentiate into hepatocyte-like cells in injured livers of SCID mice. J Cell Biochem, 2009, 108: 693-704
[21]
31 Alexanian A R. An efficient method for generation of neural-like cells from adult human bone marrow-derived mesenchymal stem cells. Regen Med, 2010, 5: 891-900
[22]
32 Lin X, Peng P, Cheng L, et al. A natural compound induced cardiogenic differentiation of endogenous MSCs for repair of infarcted heart. Differentiation, 2012, 83: 1-9
[23]
33 Saha S, Bhanja P, Kabarriti R, et al. Bone marrow stromal cell transplantation mitigates radiation-induced gastrointestinal syndrome in mice. PLoS ONE, 2011, 6: e24072
[24]
34 Huang J, Zhang Z, Guo J, et al. Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circ Res, 2010, 106: 1753-1762
[25]
35 Salem H K, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells, 2010, 28: 585-596
[26]
36 Yim Y S, Noh Y H, Kim D H, et al. Correlation between the immature characteristics of umbilical cord blood-derived mesenchymal stem cells and engraftment of hematopoietic stem cells in NOD/SCID mice. Transplant Proc, 2010, 42: 2753-2758
[27]
37 Jin G, Prabhakaran M P, Ramakrishna S. Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering. Acta Biomater, 2011, 7: 3113-3122
[28]
38 Semont A, Francois S, Mouiseddine M, et al. Mesenchymal stem cells increase self-renewal of small intestinal epithelium and accelerate structural recovery after radiation injury. Adv Exp Med Biol, 2006, 585: 19-30
[29]
39 Mouiseddine M, Francois S, Semont A, et al. Human mesenchymal stem cells home specifically to radiation-injured tissues in a non-obese diabetes/severe combined immunodeficiency mouse model. Br J Radiol, 2007, 80 (Spec No 1): S49-S55
[30]
40 Kudo K, Liu Y, Takahashi K, et al. Transplantation of mesenchymal stem cells to prevent radiation-induced intestinal injury in mice. J Radiat Res, 2010, 51: 73-79
1 Scolapio J S, Ukleja A, Burnes J U, et al. Outcome of patients with radiation enteritis treated with home parenteral nutrition. Am J Gastroenterol, 2002, 97: 662-666
[33]
2 Gavazzi C, Bhoori S, Lovullo S, et al. Role of home parenteral nutrition in chronic radiation enteritis. Am J Gastroenterol, 2006, 101: 374-379
[34]
3 Vidal A, de la Cuerda C, Luis Escat J, et al. Chronic radiation enteritis after ovarian cancer: from home parenteral nutrition to oral diet. Clin Nutr, 2006, 25: 701-704
[35]
4 Frisby C L, Fraser R J, Schirmer M B, et al. Roles of muscarinic receptor subtypes in small intestinal motor dysfunction in acute radiation enteritis. Am J Physiol Gastrointest Liver Physiol, 2007, 293: G121-G127
[36]
5 Kountouras J, Zavos C. Recent advances in the management of radiation colitis. World J Gastroenterol, 2008, 14: 7289-7301
[37]
6 Chamberlain G, Fox J, Ashton B, et al. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 2007, 25: 2739-2749
[38]
7 Bernardo M E, Locatelli F, Fibbe W E. Mesenchymal stromal cells. Ann NY Acad Sci, 2009, 1176: 101-117
[39]
8 Linard C, Ropenga A, Vozenin-Brotons M C, et al. Abdominal irradiation increases inflammatory cytokine expression and activates NF-kappaB in rat ileal muscularis layer. Am J Physiol Gastrointest Liver Physiol, 2003, 285: G556-G565
[40]
9 Hérodin F, Roy L, Grenier N, et al. Antiapoptotic cytokines in combination with pegfilgrastim soon after irradiation mitigates myelosuppression in nonhuman primates exposed to high irradiation dose. Exp Hematol, 2007, 35: 1172-1181
[41]
10 Matsuu-Matsuyama M, Nakashima M, Shichijo K, et al. Basic fibroblast growth factor suppresses radiation-induced apoptosis and TP53 pathway in rat small intestine. Radiat Res, 2010, 174: 52-61
[42]
42 Bernardo M E, Emons J A, Karperien M, et al. Human mesenchymal stem cells derived from bone marrow display a better chondrogenic differentiation compared with other sources. Connect Tissue Res, 2007, 48: 132-140
[43]
43 Chen F H, Fu S Y, Yang Y C, et al. Combination of vessel-targeting agents and fractionated radiation therapy: the role of the SDF-1/CXCR4 pathway. Int J Radiat Oncol Biol Phys, 2013, 86: 777-784
[44]
44 Vagima Y, Lapid K, Kollet O, et al. Pathways implicated in stem cell migration: the SDF-1/CXCR4 axis. Methods Mol Biol, 2011, 750: 277-289
[45]
45 Zhang J, Gong J F, Zhang W, et al. Effects of transplanted bone marrow mesenchymal stem cells on the irradiated intestine of mice. J Biomed Sci, 2008, 15: 585-594
[46]
46 Hocking A M, Gibran N S. Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res, 2010, 316: 2213-2219
[47]
47 Lange C, Brunswig-Spickenheier B, Cappallo-Obermann H, et al. Radiation rescue: mesenchymal stromal cells protect from lethal irradiation. PLoS ONE, 2011, 6: e14486
[48]
48 Mazhari R, Hare J M. Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche. Nat Clin Pract Cardiovasc Med, 2007, 4 (Suppl 1): S21-S26
[49]
49 Li Z, Jiang C M, An S, et al. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells. Oral Dis, 2013, doi: 10.1111/odi.12086
[50]
50 Hoogduijn M J, Popp F, Verbeek R, et al. The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy. Int Immunopharmacol, 2010, 10: 1496-1500
[51]
51 Marigo I, Dazzi F. The immunomodulatory properties of mesenchymal stem cells. Semin Immunopathol, 2011, 33: 593-602
[52]
52 Shi M, Liu Z W, Wang F S. Immunomodulatory properties and therapeutic application of mesenchymal stem cells. Clin Exp Immunol, 2011, 164: 1-8
[53]
53 Soleymaninejadian E, Pramanik K, Samadian E. Immunomodulatory properties of mesenchymal stem cells: cytokines and factors. Am J Reprod Immunol, 2012, 67: 1-8
[54]
54 Bassi E J, Aita C A, Camara N O. Immune regulatory properties of multipotent mesenchymal stromal cells: where do we stand? World J Stem Cells, 2011, 3: 1-8
[55]
55 Najar M, Raicevic G, Fayyad-Kazan H, et al. Immune-related antigens, surface molecules and regulatory factors in human-derived mesenchymal stromal cells: the expression and impact of inflammatory priming. Stem Cell Rev, 2012, 8: 1188-1198
[56]
56 Holley A K, Bakthavatchalu V, Velez-Roman J M, et al. Manganese superoxide dismutase: guardian of the powerhouse. Int J Mol Sci, 2011, 12: 7114-7162
[57]
57 Niu Y, Wang H, Wiktor-Brown D, et al. Irradiated esophageal cells are protected from radiation-induced recombination by MnSOD gene therapy. Radiat Res, 2010, 173: 453-461
[58]
58 Epperly M W, Wegner R, Kanai A J, et al. Effects of MnSOD-plasmid liposome gene therapy on antioxidant levels in irradiated murine oral cavity orthotopic tumors. Radiat Res, 2007, 167: 289-297
[59]
59 Carpenter M, Epperly M W, Agarwal A, et al. Inhalation delivery of manganese superoxide dismutase-plasmid/liposomes protects the murine lung from irradiation damage. Gene Ther, 2005, 12: 685-693