1 Berridge M J, Bootman M D, Roderick H L. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol, 2003, 4: 517-529
[2]
2 Fabiato A, Fabiato F. Calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit, rat, and frog hearts and from fetal and new-born rat ventricles. Ann NY Acad Sci, 1978, 307: 491-522
[3]
3 Bers D M. Excitation-contraction Coupling and Cardiac Contractile Force. 2nd ed. Dordrecht: Kluwer Academic Publishers, 2001
[4]
4 Cheng H, Lederer W J, Cannell M B. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science, 1993, 262: 740-744
[5]
5 Cannell M B, Cheng H, Lederer W J. The control of calcium release in heart muscle. Science, 1995, 268: 1045-1049
[6]
6 López-López J R, Shacklock P S, Balke C W, et al. Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science, 1995, 268: 1042-1045
[7]
7 Santana L F, Cheng H, Gómez A M, et al. Relation between the sarcolemmal Ca2+ current and Ca2+ sparks and local control theories for cardiac excitation-contraction coupling. Circ Res, 1996, 78: 166-171
[8]
8 Shorofsky S R, Izu L, Wier W G, et al. Ca2+ sparks triggered by patch depolarization in rat heart cells. Circ Res, 1998, 82: 424-429
[9]
9 Wang S Q, Song L S, Lakatta E G, et al. Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature, 2001, 410: 592-596
[10]
10 Li R C, Tao J, Guo Y B, et al. In vivo suppression of microRNA-24 prevents the transition toward decompensated hypertrophy in aortic-constricted mice. Circ Res, 112: 601-605
[11]
11 DelPrincipe F, Egger M, Niggli E. Calcium signalling in cardiac muscle: refractoriness revealed by coherent activation. Nat Cell Biol, 1999, 1: 323-329
[12]
12 Brochet D X, Yang D, Di Maio A, et al. Ca2+ blinks: rapid nanoscopic store calcium signaling. Proc Natl Acad Sci USA, 2005, 102: 3099-3104
[13]
13 Benkusky N A, Weber C S, Scherman J A, et al. Intact beta-adrenergic response and unmodified progression toward heart failure in mice with genetic ablation of a major protein kinase A phosphorylation site in the cardiac ryanodine receptor. Circ Res, 2007, 101: 819-829
[14]
14 Carter S, Colyer J, Sitsapesan R. Maximum phosphorylation of the cardiac ryanodine receptor at serine-2809 by protein kinase a produces unique modifications to channel gating and conductance not observed at lower levels of phosphorylation. Circ Res, 2006, 98: 1506-1513
[15]
15 Marx S O, Reiken S, Hisamatsu Y, et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell, 2000, 101: 365-376
[16]
16 Valdivia H H, Kaplan J H, Ellis-Davies G C, et al. Rapid adaptation of cardiac ryanodine receptors: modulation by Mg2+ and phosphorylation. Science, 1995, 267: 1997-2000
[17]
17 Wang S Q, Stern M D, Ríos E, et al. The quantal nature of Ca2+ sparks and in situ operation of the ryanodine receptor array in cardiac cells. Proc Natl Acad Sci USA, 2004, 101: 3979-3984
[18]
18 Colquhoun D, Hawkes A G. The Principles of the Stochastic Interpretation of Ion-channel Mechanisms. New York: Springer US, 1995
[19]
19 Marx S O, Gaburjakova J, Gaburjakova M, et al. Coupled gating between cardiac calcium release channels (ryanodine receptors). Circ Res, 2001, 88: 1151-1158
[20]
20 Bean B P, Nowycky M C, Tsien R W. Beta-adrenergic modulation of calcium channels in frog ventricular heart cells. Nature, 1984, 307: 371-375
[21]
21 Yue D T, Herzig S, Marban E. Beta-adrenergic stimulation of calcium channels occurs by potentiation of high-activity gating modes. Proc Natl Acad Sci USA, 1990, 87: 753-757
[22]
22 Xiao B, Jiang M T, Zhao M, et al. Characterization of a novel PKA phosphorylation site, serine-2030, reveals no PKA hyperphosphorylation of the cardiac ryanodine receptor in canine heart failure. Circ Res, 2005, 96: 847-855
[23]
23 Bers D M. Cardiac excitation-contraction coupling. Nature, 2002, 415: 198-205
[24]
24 Lindegger N, Niggli E. Paradoxical SR Ca2+ release in guinea-pig cardiac myocytes after beta-adrenergic stimulation revealed by two-photon photolysis of caged Ca2+. J Physiol, 2005, 565 (Pt 3): 801-813
[25]
25 Lehnart S E, Wehrens X H, Reiken S, et al. Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell, 2005, 123: 25-35
[26]
26 Terentyev D, Viatchenko-Karpinski S, Gyorke I, et al. Protein phosphatases decrease sarcoplasmic reticulum calcium content by stimulating calcium release in cardiac myocytes. J Physiol, 2003, 552 (Pt 1): 109-118
[27]
27 Xiao B, Tian X, Xie W, et al. Functional consequence of protein kinase A-dependent phosphorylation of the cardiac ryanodine receptor: sensitization of store overload-induced Ca2+ release. J Biol Chem, 2007, 282: 30256-30264
[28]
28 Zhou P, Zhao Y T, Guo Y B, et al. Beta-adrenergic signaling accelerates and synchronizes cardiac ryanodine receptor response to a single L-type Ca2+ channel. Proc Natl Acad Sci USA, 2009, 106: 18028-18033
[29]
29 Xu M, Zhou P, Xu S M, et al. Intermolecular failure of L-type Ca2+ channel and ryanodine receptor signaling in hypertrophy. PLoS Biol, 2007, 5: e21
[30]
30 Ginsburg K S, Bers D M. Modulation of excitation-contraction coupling by isoproterenol in cardiomyocytes with controlled SR Ca2+ load and Ca2+ current trigger. J Physiol, 2004, 556 (Pt 2): 463-480
[31]
31 Chien K R, Knowlton K U, Zhu H, et al. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J, 1991, 5: 3037-3046
[32]
32 McKinsey T A, Olson E N. Cardiac hypertrophy: sorting out the circuitry. Curr Opin Genet Dev, 1999, 9: 267-274
[33]
33 Sadoshima J, Izumo S. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol, 1997, 59: 551-571
[34]
34 Chien K R, Olson E N. Converging pathways and principles in heart development and disease: CV@CSH. Cell, 2002, 110: 153-162
[35]
35 Bénitah J P, Kerfant B G, Vassort G, et al. Altered communication between L-type calcium channels and ryanodine receptors in heart failure. Front Biosci, 2002, 7: e263-e275
[36]
36 Gómez A M, Valdivia H H, Cheng H, et al. Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science, 1997, 276: 800-806
[37]
37 Nagata K, Liao R, Eberli F R, et al. Early changes in excitation-contraction coupling: transition from compensated hypertrophy to failure in Dahl salt-sensitive rat myocytes. Cardiovasc Res, 1998, 37: 467-477
[38]
38 Harrison C. Heart disease: unmasking molecular mechanisms. Nat Rev Drug Discov, 2007, 6: 271
[39]
39 Wei S, Guo A, Chen B, et al. T-tubule remodeling during transition from hypertrophy to heart failure. Circ Res, 107: 520-531
[40]
40 Wu H D, Xu M, Li R C, et al. Ultrastructural remodelling of Ca2+ signalling apparatus in failing heart cells. Cardiovasc Res, 95: 430-438
[41]
41 Wu H D, Xu M, Li R C, et al. Ultrastructural uncoupling between T-tubules and sarcoplasmic reticulum in human heart failure. Cardiovasc Res, 98: 269-276
[42]
42 Takeshima H, Komazaki S, Nishi M, et al. Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell, 2000, 6: 11-22
[43]
43 Minamisawa S, Oshikawa J, Takeshima H, et al. Junctophilin type 2 is associated with caveolin-3 and is down-regulated in the hypertrophic and dilated cardiomyopathies. Biochem Biophys Res Commun, 2004, 325: 852-856
[44]
44 van Oort R J, Garbino A, Wang W, et al. Disrupted junctional membrane complexes and hyperactive ryanodine receptors after acute junctophilin knockdown in mice. Circulation, 123: 979-988
[45]
45 Xu M, Wu H D, Li R C, et al. Mir-24 regulates junctophilin-2 expression in cardiomyocytes. Circ Res, 111: 837-841
[46]
46 Mudd J O, Kass D A. Tackling heart failure in the twenty-first century. Nature, 2008, 451: 919-928
[47]
47 Lin Z, Murtaza I, Wang K, et al. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci USA, 2009, 106: 12103-12108
[48]
48 Song L S, Guo A, Lin R Z. MicroRNA: a toolkit fine-tuning the dyadic “fuzzy space”? Circ Res, 111: 816-818