10 Manilal S, Nguyen T M, Sewry C A, et al. The Emery-Dreifuss muscular dystrophy protein, emerin, is a nuclear membrane protein. Hum Mol Genet, 1996, 5: 801-808
[2]
11 Liu J, Lee K K, Segura-Totten M, et al. MAN1 and emerin have overlapping function(s) essential for chromosome segregation and cell division in Caenorhabditis elegans. Proc Natl Acad Sci USA, 2003, 100: 4598-4603
[3]
12 Lattanzi G, Cenni V, Marmiroli S, et al. Association of emerin with nuclear and cytoplasmic actin is regulated in differentiating myoblasts. Biochem Biophys Res Commun, 2003, 303: 764-770
[4]
13 Demmerle J, Koch A J, Holaska J M. The nuclear envelope protein emerin binds directly to histone deacetylase 3 (HDAC3) and activates HDAC3 activity. J Biol Chem, 2012, 287: 22080-22088
[5]
14 Holaska J M, Wilson K L. Multiple roles for emerin: implications for Emery-Dreifuss muscular dystrophy. Anat Rec A Discov Mol Cell Evol Biol, 2006, 288: 676-680
[6]
15 Pinto B S, Wilmington S R, Hornick E E, et al. Tissue-specific defects are caused by loss of the Drosophila MAN1 LEM domain protein. Genetics, 2008, 180: 133-145
[7]
16 Mansharamani M, Wilson K L. Direct binding of nuclear membrane protein MAN1 to emerin in vitro and two modes of binding to barrier-to-autointegration factor. J Biol Chem, 2005, 280: 13863-13870
[8]
58 D’Angelo M A, Gomez-Cavazos J S, Mei A, et al., A change in nuclear pore complex composition regulates cell differentiation. Dev Cell, 2012, 22: 446-458
[9]
59 Jamali T, Jamali Y, Mehrbod M, et al. Nuclear pore complex: biochemistry and biophysics of nucleocytoplasmic transport in health and disease. Int Rev Cell Mol Biol, 2011, 287: 233-286
[10]
60 Funasaka T, Wong R W. The role of nuclear pore complex in tumor microenvironment and metastasis. Cancer Metastasis Rev, 2011, 30: 239-251
[11]
61 Worman H J. Nuclear lamins and laminopathies. J Pathol, 2012, 226: 316-325
[12]
62 Gruenbaum Y, Margalit A, Goldman R D, et al. The nuclear lamina comes of age. Nat Rev Mol Cell Biol, 2005, 6: 21-31
[13]
63 Dechat T, Pfleghaar K, Sengupta K, et al. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev, 2008, 22: 832-853
[14]
64 Moir R D, Yoon M, Khuon S, et al. Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells. J Cell Biol, 2000, 151: 1155-1168
[15]
65 Shimi T, Pfleghaar K, Kojima S, et al. The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev, 2008, 22: 3409-3421
[16]
66 Kim Y, Sharov A A, McDole K, et al. Mouse B-type lamins are required for proper organogenesis but not by embryonic stem cells. Science, 2011, 334: 1706-1710
[17]
67 Shimi T, Butin-Israeli V, Adam S A, et al. The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev, 2011, 25: 2579-2593
[18]
68 Lopez-Soler R I, Moir R D, Spann T P, et al. A role for nuclear lamins in nuclear envelope assembly. J Cell Biol, 2001, 154: 61-70
[19]
69 Moir R D, Montag-Lowy M, Goldman R D. Dynamic properties of nuclear lamins: lamin B is associated with sites of DNA replication. J Cell Biol, 1994, 125: 1201-1212
[20]
70 Shumaker D K, Solimando L, Sengupta K, et al. The highly conserved nuclear lamin Ig-fold binds to PCNA: its role in DNA replication. J Cell Biol, 2008, 181: 269-280
[21]
94 Zhang C, Clarke P R. Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts. Science, 2000, 288: 1429-1432
[22]
95 Lu Q, Lu Z, Liu Q, et al. Chromatin-bound NLS proteins recruit membrane vesicles and nucleoporins for nuclear envelope assembly via importin-alpha/beta. Cell Res, 2012, 22: 1562-1575
[23]
96 Stewart C L, Roux K J, Burke B. Blurring the boundary: the nuclear envelope extends its reach. Science, 2007, 318: 1408-1412
[24]
97 Dechat T, Gajewski A, Korbei B, et al. LAP2α and BAF transiently localize to telomeres and specific regions on chromatin during nuclear assembly. J Cell Sci, 2004, 117 (Pt 25): 6117-6128
[25]
98 Somech R, Shaklai S, Amariglio N, et al. Nuclear envelopathies—raising the nuclear veil. Pediatr Res, 2005, 57 (5 Pt 2): 8R-15R
[26]
8 Small K, Iber J, Warren S T. Emerin deletion reveals a common X-chromosome inversion mediated by inverted repeats. Nat Genet, 1997, 16: 96-99
[27]
9 Lin F, Blake D L, Callebaut I, et al. MAN1, an inner nuclear membrane protein that shares the LEM domain with lamina-associated polypeptide 2 and emerin. J Biol Chem, 2000, 275: 4840-4847
[28]
99 Pickersgill H, Kalverda B, de Wit E, et al. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet, 2006, 38: 1005-1014
[29]
100 Pekovic V, Harborth J, Broers J L, et al. Nucleoplasmic LAP2α-lamin A complexes are required to maintain a proliferative state in human fibroblasts. J Cell Biol, 2007, 176: 163-172
[30]
101 Scaffidi P, Misteli T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol, 2008, 10: 452-459
[31]
102 Han X, Feng X, Rattner J B, et al. Tethering by lamin A stabilizes and targets the ING1 tumour suppressor. Nat Cell Biol, 2008, 10: 1333-1340
[32]
103 Malhas A N, Lee C F, Vaux D J. Lamin B1 controls oxidative stress responses via Oct-1. J Cell Biol, 2009, 184: 45-55
[33]
104 Holaska J M, Rais-Bahrami S, Wilson K L. Lmo7 is an emerin-binding protein that regulates the transcription of emerin and many other muscle-relevant genes. Hum Mol Genet, 2006, 15: 3459-3472
[34]
105 Holaska J M, Wilson K L. An emerin “proteome”: purification of distinct emerin-containing complexes from HeLa cells suggests molecular basis for diverse roles including gene regulation, mRNA splicing, signaling, mechanosensing, and nuclear architecture. Biochemistry, 2007, 46: 8897-8908
[35]
106 Dorner D, Vlcek S, Foeger N, et al. Lamina-associated polypeptide 2α regulates cell cycle progression and differentiation via the retinoblastoma-E2F pathway. J Cell Biol, 2006, 173: 83-93
[36]
107 Osada S I, Ohmori S, Taira M. XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in Xenopus embryos. Development, 2003, 130: 1783-1794
[37]
108 Raju G P, Dimova N, Klein P S, et al. SANE, a novel LEM domain protein, regulates bone morphogenetic protein signaling through interaction with Smad1. J Biol Chem, 2003, 278: 428-437
[38]
109 Cohen T V, Kosti O, Stewart C L. The nuclear envelope protein MAN1 regulates TGFb signaling and vasculogenesis in the embryonic yolk sac. Development, 2007, 134: 1385-1395
[39]
110 Bertrand A T, Chikhaoui K, Ben Y R, et al. Laminopathies: one gene, several diseases. Biol Aujourdhui, 2011, 205: 147-162
[40]
111 Reddy S, Comai L. Lamin A, farnesylation and aging. Exp Cell Res, 2012, 318: 1-7
[41]
112 Goldman R D, Shumaker D K, Erdos M R, et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA, 2004, 101: 8963-8968
[42]
113 Shumaker D K, Dechat T, Kohlmaier A, et al. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci USA, 2006, 103: 8703-8708
[43]
114 Taimen P, Pfleghaar K, Shimi T, et al. A progeria mutation reveals functions for lamin A in nuclear assembly, architecture, and chromosome organization. Proc Natl Acad Sci USA, 2009, 106: 20788-20793
[44]
115 Ramos F J, Chen S C, Garelick M G, et al. Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci Transl Med, 2012, 4: 144ra103
[45]
116 Chen C Y, Chi Y H, Mutalif R A, et al. Accumulation of the inner nuclear envelope protein Sun1 is pathogenic in progeric and dystrophic laminopathies. Cell, 2012, 149: 565-577
[46]
117 Mellad J A, Warren D T, Shanahan C M. Nesprins LINC the nucleus and cytoskeleton. Curr Opin Cell Biol, 2011, 23: 47-54
[47]
118 Zhang Q, Ragnauth C, Greener M J, et al. The nesprins are giant actin-binding proteins, orthologous to Drosophila melanogaster muscle protein MSP-300. Genomics, 2002, 80: 473-481
[48]
119 de la Rosa J, Freije J M, Cabanillas R, et al. Prelamin A causes progeria through cell-extrinsic mechanisms and prevents cancer invasion. Nat Commun, 2013, 4: 2268
[49]
120 Ostlund C, Folker E S, Choi J C, et al. Dynamics and molecular interactions of linker of nucleoskeleton and cytoskeleton (LINC) complex proteins. J Cell Sci, 2009, 122 (Pt 22): 4099-4108
[50]
7 Shumaker D K, Lee K K, Tanhehco Y C, et al. LAP2 binds to BAF. DNA complexes: requirement for the LEM domain and modulation by variable regions. EMBO J, 2001, 20: 1754-1764
[51]
1 Vlcek S, Dechat T, Foisner R. Nuclear envelope and nuclear matrix: interactions and dynamics. Cell Mol Life Sci, 2001, 58: 1758-1765
[52]
2 Holmer L, Worman H J. Inner nuclear membrane proteins: functions and targeting. Cell Mol Life Sci, 2001, 58: 1741-1747
[53]
3 Holaska J M, Wilson K L, Mansharamani M. The nuclear envelope, lamins and nuclear assembly. Curr Opin Cell Biol, 2002, 14: 357-364
[54]
4 Ho C Y, Jaalouk D E, Vartiainen M K, et al. Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. Nature, 2013, 497: 507-511
[55]
5 Hoffmann K, Dreger C K, Olins A L, et al. Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger-Huet anomaly). Nat Genet, 2002, 31: 410-414
[56]
6 Schirmer E C, Florens L, Guan T, et al. Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science, 2003, 301: 1380-1382
[57]
17 Lin F, Morrison J M, Wu W, et al. MAN1, an integral protein of the inner nuclear membrane, binds Smad2 and Smad3 and antagonizes transforming growth factor-beta signaling. Hum Mol Genet, 2005, 14: 437-445
[58]
18 Dechat T, Vlcek S, Foisner R. Review: lamina-associated polypeptide 2 isoforms and related proteins in cell cycle-dependent nuclear structure dynamics. J Struct Biol, 2000, 129: 335-345
[59]
19 Markiewicz E, Dechat T, Foisner R, et al. Lamin A/C binding protein LAP2α is required for nuclear anchorage of retinoblastoma protein. Mol Biol Cell, 2002, 13: 4401-4413
[60]
20 Taylor M R, Slavov D, Gajewski A, et al. Thymopoietin (lamina-associated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Hum Mutat, 2005, 26: 566-574
[61]
21 Cai M, Huang Y, Zheng R, et al. Solution structure of the cellular factor BAF responsible for protecting retroviral DNA from autointegration. Nat Struct Biol, 1998, 5: 903-909
[62]
22 Zheng R, Ghirlando R, Lee M S, et al. Barrier-to-autointegration factor (BAF) bridges DNA in a discrete, higher-order nucleoprotein complex. Proc Natl Acad Sci USA, 2000, 97: 8997-9002
[63]
23 Segura-Totten M, Wilson K L. BAF: roles in chromatin, nuclear structure and retrovirus integration. Trends Cell Biol, 2004, 14: 261-266
[64]
24 Montes de Oca R, Lee K K, Wilson K L. Binding of barrier to autointegration factor (BAF) to histone H3 and selected linker histones including H1.1. J Biol Chem, 2005, 280: 42252-42262
[65]
25 Hirano Y, Segawa M, Ouchi F S, et al. Dissociation of emerin from barrier-to-autointegration factor is regulated through mitotic phosphorylation of emerin in a xenopus egg cell-free system. J Biol Chem, 2005, 280: 39925-39933
[66]
26 Segura-Totten M, Kowalski A K, Craigie R, et al. Barrier-to-autointegration factor: major roles in chromatin decondensation and nuclear assembly. J Cell Biol, 2002, 158: 475-485
[67]
27 Shimi T, Koujin T, Segura-Totten M, et al. Dynamic interaction between BAF and emerin revealed by FRAP, FLIP, and FRET analyses in living HeLa cells. J Struct Biol, 2004, 147: 31-41
[68]
28 Holaska J M, Lee K K, Kowalski A K, et al. Transcriptional repressor germ cell-less (GCL) and barrier to autointegration factor (BAF) compete for binding to emerin in vitro. J Biol Chem, 2003, 278: 6969-6975
[69]
29 Haraguchi T, Koujin T, Osakada H, et al. Nuclear localization of barrier-to-autointegration factor is correlated with progression of S phase in human cells. J Cell Sci, 2007, 120 (Pt 12): 1967-1977
[70]
30 Margalit A, Segura-Totten M, Gruenbaum Y, et al. Barrier-to-autointegration factor is required to segregate and enclose chromosomes within the nuclear envelope and assemble the nuclear lamina. Proc Natl Acad Sci USA, 2005, 102: 3290-3295
[71]
31 Margalit A, Neufeld E, Feinstein N, et al. Barrier to autointegration factor blocks premature cell fusion and maintains adult muscle integrity in C. elegans. J Cell Biol, 2007, 178: 661-673
[72]
32 Furukawa K, Sugiyama S, Osouda S, et al. Barrier-to-autointegration factor plays crucial roles in cell cycle progression and nuclear organization in Drosophila. J Cell Sci, 2003, 116 (Pt 18): 3811-3823
[73]
33 Asencio C, Davidson I F, Santarella-Mellwig R, et al. Coordination of kinase and phosphatase activities by Lem4 enables nuclear envelope reassembly during mitosis. Cell, 2012, 150: 122-135
[74]
34 Jacque J M, Stevenson M. The inner-nuclear-envelope protein emerin regulates HIV-1 infectivity. Nature, 2006, 441: 641-645
[75]
35 Cox J L, Mallanna S K, Ormsbee B D, et al. Banf1 is required to maintain the self-renewal of both mouse and human embryonic stem cells. J Cell Sci, 2011, 124 (Pt 15): 2654-2665
37 Puente X S, Quesada V, Osorio F G, et al. Exome sequencing and functional analysis identifies BANF1 mutation as the cause of a hereditary progeroid syndrome. Am J Hum Genet, 2011, 88: 650-656
[78]
38 Polioudaki H, Kourmouli N, Drosou V, et al. Histones H3/H4 form a tight complex with the inner nuclear membrane protein LBR and heterochromatin protein 1. EMBO Rep, 2001, 2: 920-925
[79]
40 Tseng L C, Chen R H. Temporal control of nuclear envelope assembly by phosphorylation of lamin B receptor. Mol Biol Cell, 2011, 22: 3306-3317
[80]
41 Lu X, Shi Y, Lu Q, et al. Requirement for lamin B receptor and its regulation by importin b and phosphorylation in nuclear envelope assembly during mitotic exit. J Biol Chem, 2010, 285: 33281-33293
[81]
42 Ma Y, Cai S, Lv Q, et al. Lamin B receptor plays a role in stimulating nuclear envelope production and targeting membrane vesicles to chromatin during nuclear envelope assembly through direct interaction with importin b. J Cell Sci, 2007, 120 (Pt 3): 520-530
[82]
43 Best S, Salvati F, Kallo J, et al. Lamin B-receptor mutations in Pelger-Hu?t anomaly. Br J Haematol, 2003, 123: 542-544
[83]
44 Forbes D J. Structure and function of the nuclear pore complex. Annu Rev Cell Biol, 1992, 8: 495-527
[84]
45 Grossman E, Medalia O, Zwerger M. Functional architecture of the nuclear pore complex. Annu Rev Biophys, 2012, 41: 557-584
[85]
46 Hoelz A, Debler E W, Blobel G. The structure of the nuclear pore complex. Annu Rev Biochem, 2011, 80: 613-643
[86]
47 Allen T D, Cronshaw J M, Bagley S, et al. The nuclear pore complex: mediator of translocation between nucleus and cytoplasm. J Cell Sci, 2000, 113:1651-1659
[87]
48 Suntharalingam M, Wente S R. Peering through the pore: nuclear pore complex structure,assembly, and function. Dev Cell, 2003, 4: 775-789
[88]
49 Mishra R K, Chakraborty P, Arnaoutov A, et al. The Nup107-160 complex and gamma-TuRC regulate microtubule polymerization at kinetochores. Nat Cell Biol, 2010, 12: 164-169
[89]
50 Orjalo A V, Arnaoutov A, Shen Z, et al. The Nup107-160 nucleoporin complex is required for correct bipolar spindle assembly. Mol Biol Cell, 2006, 17: 3806-3818
[90]
51 Solmaz S R, Chauhan R, Blobel G, et al. Molecular architecture of the transport channel of the nuclear pore complex. Cell, 2011, 147: 590-602
[91]
52 Clarke P R, Zhang C. Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol Cell Biol, 2008, 9: 464-477
[92]
53 Clarke P R, Zhang C. Spatial and temporal control of nuclear envelope assembly by Ran GTPase. Symp Soc Exp Biol, 2004, 56: 193-204
[93]
54 Van de Vosse D W, Wan Y, Lapetina D L, et al. A role for the nucleoporin nup170p in chromatin structure and gene silencing. Cell, 2013, 152: 969-983
[94]
55 Raices M, D’Angelo M A. Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nat Rev Mol Cell Biol, 2012, 13: 687-699
[95]
56 Strambio-De-Castillia C, Niepel M, Rout M P. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol, 2010, 11: 490-501
[96]
57 Franks T M, Hetzer M W. The role of Nup98 in transcription regulation in healthy and diseased cells. Trends Cell Biol, 2013, 23: 112-117
[97]
71 Zuo B, Yang J, Wang F, et al. Influences of lamin A levels on induction of pluripotent stem cells. Biol Open, 2012, 1: 1118-1127
[98]
72 Broers J L, Ramaekers F C. Dynamics of nuclear lamina assembly and disassembly. Symp Soc Exp Biol, 2004: 177-192
[99]
73 Johnson B R, Nitta R T, Frock R L, et al. A-type lamins regulate retinoblastoma protein function by promoting subnuclear localization and preventing proteasomal degradation. Proc Natl Acad Sci USA, 2004, 101: 9677-9682
[100]
74 Sullivan T, Escalante-Alcalde D, Bhatt H, et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol, 1999, 147: 913-920
[101]
75 Gonzalez-Suarez I, Redwood A B, Perkins S M, et al. Novel roles for A-type lamins in telomere biology and the DNA damage response pathway. EMBO J, 2009, 28: 2414-2427
[102]
76 Solovei I, Wang A S, Thanisch K, et al. LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell, 2013, 152: 584-598
[103]
77 Candelario J, Sudhakar S, Navarro S, et al. Perturbation of wild-type lamin A metabolism results in a progeroid phenotype. Aging Cell, 2008, 7: 355-367
[104]
78 Frock R L, Kudlow B A, Evans A M, et al. Lamin A/C and emerin are critical for skeletal muscle satellite cell differentiation. Genes Dev, 2006, 20: 486-500
[105]
79 Markiewicz E, Ledran M, Hutchison C J. Remodelling of the nuclear lamina and nucleoskeleton is required for skeletal muscle differentiation in vitro. J Cell Sci, 2005, 118 (Pt 2): 409-420
[106]
80 Kong L, Sch?fer G, Bu H, et al. Lamin A/C protein is overexpressed in tissue-invading prostate cancer and promotes prostate cancer cell growth, migration and invasion through the PI3K/AKT/PTEN pathway. Carcinogenesis, 2012, 33: 751-759
[107]
81 Houben F, Willems C H, Declercq I L, et al. Disturbed nuclear orientation and cellular migration in A-type lamin deficient cells. Biochim Biophys Acta, 2009, 1793: 312-324
[108]
82 Ivorra C, Kubicek M, González J M, et al. A mechanism of AP-1 suppression through interaction of c-Fos with lamin A/C. Genes Dev, 2006, 20: 307-320
[109]
83 González J M, Navarro-Puche A, Casar B, et al. Fast regulation of AP-1 activity through interaction of lamin A/C, ERK1/2, and c-Fos at the nuclear envelope. J Cell Biol, 2008, 183: 653-666
85 Laurell E, Beck K, Krupina K, et al. Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry. Cell, 2011, 144: 539-550
[112]
86 Hetzer M W, Walther T C, Mattaj I W. Pushing the envelope: structure, function, and dynamics of the nuclear periphery. Annu Rev Cell Dev Biol, 2005, 21: 347-380
[113]
87 Gavet O, Pines J. Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell, 2010, 18: 533-543
[114]
39 Holmer L, Pezhman A, Worman H J. The human lamin B receptor/sterol reductase multigene family. Genomics, 1998, 54: 469-476
[115]
90 Yu J, Fleming S L, Williams B, et al. Greatwall kinase: a nuclear protein required for proper chromosome condensation and mitotic progression in Drosophila. J Cell Biol, 2004, 164: 487-492
[116]
91 Lénárt P, Rabut G, Daigle N, et al. Nuclear envelope breakdown in starfish oocytes proceeds by partial NPC disassembly followed by a rapidly spreading fenestration of nuclear membranes. J Cell Biol, 2003, 160: 1055-1068
[117]
92 Dessev G, Iovcheva-Dessev C, Bischoff J R, et al. A complex containing p34cdc2 and cyclin B phosphorylates the nuclear lamin and disassembles nuclei of clam oocytes in vitro. J Cell Biol, 1991, 112: 523-533
[118]
93 Fields A P, Thompson L J. The regulation of mitotic nuclear envelope breakdown: a role for multiple lamin kinases. Prog Cell Cycle Res, 1995, 1: 271-286
[119]
121 Taranum S, Sur I, Müller R, et al. Cytoskeletal interactions at the nuclear envelope mediated by nesprins. Int J Cell Biol, 2012, 2012: 736524
[120]
122 Dechat T, Shimi T, Adam S A, et al. Alterations in mitosis and cell cycle progression caused by a mutant lamin A known to accelerate human aging. Proc Natl Acad Sci USA, 2007, 104: 4955-4960
[121]
123 Marella N V, Bhattacharya S, Mukherjee L, et al. Cell type specific chromosome territory organization in the interphase nucleus of normal and cancer cells. J Cell Physiol, 2009, 221: 130-138
[122]
124 Lavrov A V, Vol’dgorn I I, Bochkov N P. Chromosome territories in the interphase nucleus in normal or pathological condition. Vestn Ross Akad Med Nauk, 2011: 48-54
[123]
88 Chase D, Serafinas C, Ashcroft N, et al. The polo-like kinase PLK-1 is required for nuclear envelope breakdown and the completion of meiosis in Caenorhabditis elegans. Genesis, 2000, 26: 26-41