全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

古田山亚热带常绿阔叶林粗根空间分布特征及影响因子分析——探地雷达途径

, PP. 788-798

Keywords: 探地雷达,粗根密度,粗根空间分布,环境生物因素

Full-Text   Cite this paper   Add to My Lib

Abstract:

粗根在森林生态系统内扮演重要角色,粗根空间分布不仅与环境因素有关还受到生物因素的影响,根系密度可以在一定程度上反映森林群落地下生长及种间竞争情况.根系研究一直是生态学领域极具挑战性的工作,传统的挖掘法具有费时、费力、破坏样地、不能连续测定等缺点.在自然保护区,原则上禁止使用破坏性取样方法进行研究.因此,应用非破坏性方法进行森林粗根研究具有重要的实践意义.应用探地雷达技术,对古田山自然保护区24公顷监测样地内山脊、山坡、山谷3种生境及胸径大于50cm优势树种甜槠、木荷的地下粗根密度进行研究.结果发现:(ⅰ)探地雷达探测3种生境粗根密度均值为88.04roots/m2.粗根主要集中在地表0~40cm土层范围,土壤深度增加,粗根密度迅速下降.粗根密度集中于树种周围,较开阔样地或距树木一定距离处粗根密度较低;(ⅱ)山脊、山坡、山谷间总粗根密度差异显著,山脊、山谷粗根密度大于山坡;优势种甜槠粗根密度大于木荷.直径>3cm的粗根在山谷分布数量显著大于山坡、山脊,该部分粗根在20~40cm土层密度值最大;(ⅲ)粗根密度随树种丰富度的增加而显著降低,优势树种甜槠、青冈、马尾松个体数对粗根分布有影响显著;(ⅳ)0~40cm是粗根的“基础分布层”,大部分粗根分布于此范围,粗根密度均值为84.18roots/m2,与地形变化、树种丰富度、稀疏树种丰富度、地上树木密度均没有显著回归关系;40~60cm土层,环境与生物因素均会影响粗根密度的大小,是森林根系减小空间重叠、邻根干扰、缓解竞争压力的“潜在分布层”.研究表明,应用探地雷达技术可以实现对粗根空间分布及影响因子较准确、有效地非破坏性研究.

References

[1]  1 Stover D B, Day F P, Butnor J R, et al. Effect of elevated CO2 on coarse-root biomass in Florida scrub detected by ground-penetrating radar. Ecology, 2007, 88: 1328-1334
[2]  2 Resh S C, Battaglia M, Worledge D, et al. Coarse root biomass for eucalypt plantations in Tasmania, Australia: sources of variation and methods for assessment. Trees-Struct Funct, 2003, 17: 389-399
[3]  3 Day F P, Weber E P, Hinkle C, et al. Effects of elevated atmospheric CO2 on fine root length and distribution in an oak-palmetto scrub ecosystem in central Florida. Global Change Biol, 1996, 2: 143-148
[4]  4 Misra R, Turnbull C, Cromer R, et al. Below- and above-ground growth of Eucalyptus nitens in a young plantation: I Biomass. Forest Ecol Manag, 1998, 106: 283-293
[5]  5 Gale M R, Grigal D F, Harding R B. Soil productivity index: predictions of site quality for white spruce plantations. Soil Sci Soc Am J, 1991, 55: 1701-1708
[6]  6 李丽红. 杉木观光木混交林生物产量结构特征. 福建林学院学报, 2003, 23: 297-300
[7]  7 李燕燕, 樊后保. 马尾松一火力楠混交林生物量及养分结构特征. 江西农业大学学报, 2005, 27: 700-704
[8]  15 Bi H, Turvey N D, Heinrich P. Rooting density and tree size of Pinus radiata (D. Don) in response to competition from Eucalyptus obliqua (L''Herit). Forest Ecol Manag, 1992, 49: 31-42
[9]  16 Wielopolski L, Hendrey G, Daniels J, et al. Imaging Tree Root Systems In Situ. In: Proc Eighth Int Conf on Ground Penetrating Radar. Noon D A, Stickley G F, Longstaff D, eds. Washington, DC, 2000, 4084: 642-646
[10]  17 Daniels D J. Ground Penetrating Radar. Encyclopedia of RF and Microwave Engineering, 2005, doi: 10.1002/0471654507.eme152
[11]  18 Hruska J, ?ermák J, ?ustek S. Mapping tree root systems with ground-penetrating radar. Tree Physiol, 1999, 19: 125-130
[12]  19 Butnor J R, Doolittle J, Kress L, et al. Use of ground-penetrating radar to study tree roots in the southeastern United States. Tree Physiol, 2001, 21: 1269-1278
[13]  20 胡正华, 于明坚, 丁炳扬, 等. 古田山国家级自然保护区常绿阔叶林类型及其群落物种多样性研究. 应用与环境生物学报, 2003, 9: 341-345
[14]  21 Molino J F, Sabatier D. Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis. Science, 2001, 294: 1702-1704
[15]  22 R Development Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2009, http: //www.R-project.org, accessed 2010-09
[16]  23 程瑞梅, 王瑞丽, 肖文发, 等. 三峡库区马尾松根系生物量的空间分布. 生态学报, 2012, 32: 823-832
[17]  24 Tufekcioglu A, Raich J, Isenhart T, et al. Fine root dynamics, coarse root biomass, root distribution and soil respiration in a multispecies riparian buffer in Central Iowa, USA. Agroforest Syst, 1998, 44: 163-174
[18]  25 刘鑫, 满秀玲. 毛乌素沙地梁地上小叶杨根系分布特征. 中国水土保持科学, 2008, 4: 8-53
[19]  26 Majdi H, Persson H. Spatial distribution of fine roots, rhizosphere and bulk soil chemistry in an acidified Picea abies stand. Scand J Forest Res, 1993, 8: 147-155
[20]  27 Büttner V, Leuschner C. Spatial and temporal patterns of fine root abundance in a mixed oak-beech forest. Forest Ecol Manag, 1994, 70: 11-21
[21]  28 Brisson J, Reynolds J F. The effect of neighbors on root distribution in a creosotebush (Larrea tridentata) population. Ecology, 1994, 75: 1693-1702
[22]  29 Casper B B, Jackson R B. Plant competition underground. Annu Rev Eco Syst, 1997, 28: 545-570
[23]  30 Stegen J C, Hurlbert A H. Inferring ecological processes from taxonomic, phylogenetic and functional trait β-diversity. PLoS ONE, 2011, 6: e20906
[24]  8 张俊娥, 李玉灵, 黄大庄, 等. 桑粮间作田条桑根系分布格局及其对土壤水分、养分的影响. 水土保持学报, 2007, 21: 38-42
[25]  9 Schroth G. Tree root characteristics as criteria for species selection and systems design in agroforestry. Agroforest Syst, 1995, 30: 125-143
[26]  11 任安芝, 高玉葆. 不同沙地生境下黄柳(Salix gordejevii)的根系分布和冠层结构特征. 生态学报, 2001, 21: 399-404
[27]  12 Leuschner C, Hertel D, Coners H, et al. Root competition between beech and oak: a hypothesis. Oecologia, 2001, 126: 276-284
[28]  13 刘春江, 郭旭临, 徐振泉. 北京西山地区人工油松栓皮栎混交林根系研究初报. 北京林业学院学报, 1985, 1: 77-84
[29]  14 Xie Y, An S, Wu B, et al. Density-dependent root morphology and root distribution in the submerged plant Vallisneria natans. Environ Exp Bot, 2006, 57: 195-200
[30]  10 Archer E, Strauss H. Effect of plant density on root distribution of three-year-old grafted 99 Richter grapevines. S Afr J Enol Vitic, 1985, 6: 25-30

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133