1 Domagk G. Ein Beitrag zur Chemotherapie der bakteriellen Infektionen. Dtsch Med Wochenschr, 1935, 61: 250-253
[2]
2 Trefouel J, Nrrn F, Bovet D. Activité du p-aminophenylsulfamide sur les infections streptococciques experimentales de la souris et du lapin. C R Soc Biol,1935, 120: 756-758
[3]
3 Woods D D. The relation of p-aminobenzoic acid to the mechanism of the action of sulphanilamide. Br J Exp Pathol, 1940, 21: 74-90
[4]
4 Fildes P. A rational approach to research in chemotherapy. Lancet, 1940, 238: 955-957
[5]
5 Brown G M. The biosynthesis of folic acid. J Biol Chem, 1962, 237: 536-540
[6]
6 Bermingham A, Derrick J P. The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery. BioEssays, 24: 637-648
[7]
7 Stokstad E L R, Jukes T H. Sulfonamides and folie acid antagonists: a historical review. J Nutr, 1987, 117: 1335-1341
[8]
8 Lampen J O, Jones M J. The antagonism of sulfonamide inhibition of certain lactobacilli and enterococci by pteroylglutamic acid and related compounds. J Biol Chem, 1946, 166: 435-448
[9]
9 Lampen J O, Jones M J. The growth-promoting and antisulfonamide activity of p-aminobenzoic acid, pteroyglutamic acid and related compounds for Lactobacillus arabinosus and Streptobacterium plantanim. J Biol Chem, 1947, 170: 133-146
[10]
10 Bell P H, Roblin Jr R O. Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide type compounds. J Am Chem Soc, 1942, 64: 2905-2917
13 Rang H P, Dale M M, Ritter J M. Pharmacology. 3rd ed. New York: Churchill Livingstone, 1995. 721-722
[14]
14 Page C, Curtis M, Sutter M, et al. 彩色图解药理学. 钟芝敏, 李秀月, 邱欣怡译. 第二版. Singapore: Elsevier (Singapore) Pte Ltd, 2005. 132
[15]
15 Denyer S P, Hodges N A, Gorman S P. 药物微生物学. 司书毅, 洪斌, 余利岩译. 第七版. 北京: 化学工业出版社, 2007. 230-231
[16]
16 Smith C L, Powell K R. Review of the sulfonamides and trimethoprim. Pediatr in Rev, 2000, 21: 368-371
[17]
17 雷小平, 徐萍. 药物化学. 北京: 高等教育出版社, 2010. 78-81
[18]
18 Mengelers M J B, Hougee P E, Janssen L H M, et al. Structure-activity relationships between antibacterial activities and physicochemical properties of sulfonamides. J vet Pharmacol Therap, 1997, 20: 276-283
20 Schramm V L. Enzymatic transition state theory and transition state analogue design. J Biol Chem, 2007, 282: 28297-28300
[21]
21 Radzicka A, Wolfenden R. A proficient enzyme. Science, 1995, 267: 90-93
[22]
22 Black J W, Duncan W A M, Shanks R G. Comparison of some properties of pronethalol and propranolol. Br J Pharmacol, 1965, 25: 577-591
[23]
23 Gether U, Kobilka B K. G protein-coupled receptors II mechanism of agonist activation. J Biol Chem, 1998, 273: 17979-17982
[24]
24 Takahashi N, Kakinuma H, Liu L, et al. In vitro abzyme evolution to optimize antibody recognition for catalysis. Nat Biotechnol, 2001, 19: 563-567
[25]
25 Martin D S, Stolti R L, Sawyer R C, et al. Therapeutic utility of utilizing low doses of N-(phosphonacetyl)-L-aspartic acid in combination with 5-fluorouracil: a murine study with clinical relevance. Cancer Res, 1983, 43: 2317-2321
[26]
26 Kensler T W, Mutter G, Hankerson J G, et al. Mechanism of resistance of variants of the lewis lung carcinoma to N-(phosphonacetyl)- L-aspartic acid. Cancer Res, 1981, 41: 894-904
[27]
27 Johnson R K, lnouye T, Goldin A, et al. Antitumor activity of N-(phosphonacetyl)-L-aspartic acid, a transition-state inhibitor of aspartate transcarbamylase. Cancer Res, 1976, 36: 2720-2725
[28]
28 Casper E S, Vale K, Williams L J, et al. Phase I and clinical pharmacological evaluation of biochemical modulation of 5-fluorouracil with N-(phosphonacetyl)-L-aspartic acid. Cancer Res, 1983, 43: 2324-2329
[29]
29 Ardalan B, Sridhar K S, Benedetto P, et al. A phase I, II study of high-dose 5-fluorouracil and high-dose leucovorin with low-dose phosphonacetyl-L-aspartic acid in patients with advanced malignancies. Cancer, 1991, 68: 1242-1246
[30]
30 Ekstr?m F, H?rnberg A, Artursson E, et al. Structure of HI-6·Sarin-Acetylcholinesterase determined by X-Ray crystallography and molecular dynamics simulation: reactivator mechanism and design. PLoS ONE, 2009, 4: e5957
[31]
31 Trott O, Olson A J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem, 2010, 31: 455-461
[32]
32 Miles R W, Tyler P C, Furneaux R H, et al. One-third-the-sites transition-state inhibitors for purine nucleoside phosphorylase. Biochemistry, 1998, 37: 8615-8621