全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于AFM的哺乳动物活细胞成像

, PP. 770-777

Keywords: 原子力显微镜,细胞运动,板状伪足,细胞骨架,聚二甲基硅氧烷

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用原子力显微镜对活体状态的哺乳动物贴壁细胞和悬浮细胞的形貌结构进行了成像.利用时延AFM记录了MCF-7和Neuro-2a细胞在运动过程中细胞超微结构的动态变化.AFM连续成像结果直观揭示出在MCF-7细胞的收缩过程中会产生很多锯齿状的不断进行重组的丝状伪足,且细胞板状伪足的厚度在收缩运动后增加;而在Neuro-2a细胞的伸长过程中,细胞骨架从不规则形态重组为伸直的形态.针对哺乳动物悬浮细胞,提出了一种结合聚二甲基硅氧烷微坑机械夹持和多聚赖氨酸静电吸附的细胞固定方法,并利用该方法对单个淋巴瘤活细胞进行固定,实现了对淋巴瘤活细胞表面形貌的AFM成像.实验结果为细胞运动带来了新的认识,同时也证明了PDMS微坑方法用于哺乳动物悬浮细胞固定的有效性.

References

[1]  1 Mogilner A, Keren K. The shape of motile cells. Curr Biol, 2009, 19: R762-R771
[2]  2 Kilian K A, Bugarija B, Lahn B T, et al. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci USA, 2010, 107: 4872-4877
[3]  3 Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol, 2006, 7: 265-275
[4]  4 Keren K, Pincus Z, Allen G M, et al. Mechanism of shape determination in motile cells. Nature, 2008, 453: 475-480
[5]  5 Binnig G, Quate C F, Gerber C. Atomic force microscope. Phys Rev Lett, 1986, 56: 930-933
[6]  6 Muller D J, Dufrene Y F. Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol, 2011, 21: 461-469
[7]  7 Heinisch J J, Lipke P N, Beaussart A, et al. Atomic force microscopy-looking at mechanosensors on the cell surface. J Cell Sci, 2012, 125: 4189-4195
[8]  8 Schafer C, Shahin V, Albermann L, et al. Aldosterone signaling pathway across the nuclear envelope. Proc Natl Acad Sci USA, 2002, 99: 7154-7159
[9]  9 Mari S A, Pessoa J, Altieri S, et al. Gating of the Mlotik1 potassium channel involves large rearrangements of the cyclic nucleotide-binding domains. Proc Natl Acad Sci USA, 2011, 108: 20802-20807
[10]  10 Stadler B, Blattler T M, Franco-Obregon A. Time-lapse imaging of in vitro myogenesis using atomic force microscopy. J Microsc, 2010, 237: 63-69
[11]  11 Alsteens D, Dupres V, Yunus S, et al. High-resolution imaging of chemical and biological sites on living cells using peak force tapping atomic force microscopy. Langmuir, 2012, 28: 16738-16744
[12]  12 Fatner G E, Barbero R J, Gray D S, et al. Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nat Nanotechnol, 2010, 5: 280-285
[13]  13 Rosenbluth M J, Lam W A, Fletcher D A. Force microscopy of nonadherent cells: a comparison of leukemia cell deformability. Biophys J, 2006, 90: 2994-3003
[14]  14 Li M, Liu L, Xi N, et al. Imaging and measuring the rituximab-induced changes of mechanical properties in B-lymphoma cells using atomic force microscopy. Biochem Biophys Res Commun, 2011, 404: 689-694
[15]  15 Li M, Liu L, Xi N, et al. Drug-induced changes of topography and elasticity in living B lymphoma cells based on atomic force microscopy. Acta Phys Chim Sin, 2012, 28: 1502-1508
[16]  17 Franz C M, Jones G E, Ridley A J. Cell migration in development and disease. Dev Cell, 2002, 2: 153-158
[17]  18 Yamazaki D, Kurisu S, Takenawa T. Regulation of cancer cell motility through actin reorganization. Cancer Sci, 2005, 96: 379-386
[18]  19 Friedl P, Wolf K. Tumor-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer, 2003, 3: 362-374
[19]  20 Pollard T D, Cooper J A. Actin, a central player in cell shape and movement. Science, 2009, 326: 1208-1212
[20]  21 Mitra S K, Hanson D A, Schlaepfer D D. Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol, 2005, 6: 56-68
[21]  22 Wei C, Wang X, Chen M, et al. Calcium flickers steer cell migration. Nature, 2009, 457: 901-905
[22]  23 Engler A J, Sen S, Sweeney H L, et al. Matrix elasticity directs stem cell lineage specification. Cell, 2006, 126: 677-689
[23]  24 Schaus S S, Henderson E R. Cell viability and probe-cell membrane interactions of XR1 glial cells imaged by atomic force microscopy. Biophys J, 1997, 73: 1205-1214
[24]  25 Li Y, Zhang J, Zhang B. Atomic force microscopy study on chlorpromazine-induced morphological changes of living HeLa cells in vitro. Scanning, 2009, 31, 259-265
[25]  26 Schoenenberger C A, Hoh J H. Slow cellular dynamics in MDCK and R5 cells monitored by time-lapse atomic force microscopy. Biophys J, 1994, 67: 929-936
[26]  27 Ushiki T, Hitomi J, Umemoto T, et al. Imaging of living cultured cells of an epithelial nature by atomic force microscopy. Arch Histol Cytol, 1999, 62: 47-55
[27]  28 Dague E, Jauvert E, Laplatine L, et al. Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bio-experiments. Nanotechnology, 2011, 22: 395102
[28]  29 Muller D J, Dufrene Y F. Force nanoscopy of living cells. Curr Biol, 2011, 21: R212-R216
[29]  30 Ando T. High-speed atomic force microscopy coming of age. Nanotechnology, 2012, 23: 062001
[30]  31 李密, 刘连庆, 席宁, 等. 基于AFM单分子力谱技术的CD20-Rituximab间相互作用力测量. 科学通报, 2011, 56: 2681-2688
[31]  32 李密, 刘连庆, 席宁, 等. 基于AFM的红细胞及不同侵袭程度癌细胞的成像及机械特性测量. 中国科学: 生命科学, 2012, 42: 919-925
[32]  33 李密, 刘连庆, 席宁, 等. AFM单细胞单分子形貌成像的研究进展. 科学通报, 2013, 58: 1711-1718
[33]  34 Li M, Liu L Q, Xi N, et al. Mapping CD20 molecules on the lymphoma cell surface using atomic force microscopy. Chin Sci Bull, 2013, 58: 1516-1519
[34]  16 Bershadsky A D, Kozlov M M. Crawling cell locomotion revisited. Proc Natl Acad Sci USA, 2011, 108: 20275-20276

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133