全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

电子显微镜技术——病毒结构与形态研究及快速诊断的基础平台

, PP. 719-729

Keywords: 电子显微镜技术,病毒结构,病毒形态学,病毒诊断

Full-Text   Cite this paper   Add to My Lib

Abstract:

电子显微镜技术的优势在于微观测试的直观、快速与准确,因此成为新发传染病及生物反恐一线工作的重要平台基础.然而,全球电子显微镜诊断实验室的数量却在减少,并且越来越难以找到满意的途径来分析电子显微镜图像.加强病毒结构和形态发生学的研究在病毒的电子显微镜诊断应用中显得尤为重要.本文在分析技术优势的基础上,着重介绍了电子显微镜技术对病毒学发展的历史贡献、在病毒鉴别诊断中的作用、对特殊病毒抗原的定位、对病毒-宿主细胞的相互作用以及病毒形态发生学的研究,并指出,电子显微镜诊断是建立在结合临床资料以及光学显微镜和共聚焦显微镜综合数据基础之上的,避免操作不当造成的人工假象和错误结果是克服技术的局限性从而发挥其优势的重要保证.

References

[1]  68 Ooms L S, Jerome W G, Dermody T S, et al. Reovirus replication protein mu2 influences cell tropism by promoting particle assembly within viral inclusions. J Virol, 2012, 86: 10979-10987
[2]  69 Kolesnikova L, Heck S, Matrosovich T, et al. Influenza virus budding from the tips of cellular microvilli in differentiated human airway epithelial cells. J Gen Virol, 2013, 94: 971-976
[3]  70 Houzet L, Gay B, Morichaud, et al. Intracellular assembly and budding of the Murine Leukemia Virus in infected cells. Retrovirology, 2006, 3: 12
[4]  71 Schubert U, Ott D E, Chertova E N, et al. Proteasome inhibition interferes with gag polyprotein processing, release, and maturation of HIV-1 and HIV-2. Proc Natl Acad Sci USA, 2000, 97: 13057-13062
[5]  72 Huang C Y, Chiang S F, Lin T Y, et al. HIV-1 Vpr triggers mitochondrial destruction by impairing Mfn2-mediated ER-mitochondria interaction. PLoS One, 2012, 7: e33657
[6]  73 Boyapalle S, Wong T, Garay J, et al. Respiratory syncytial virus NS1 protein colocalizes with mitochondrial antiviral signaling protein MAVS following infection. PLoS One, 2012, 7: e29386
[7]  74 Le Sage V, Banfield B W. Dysregulation of autophagy in murine fibroblasts resistant to HSV-1 infection. PLoS One, 2012, 7: e42636
[8]  75 Lam S, Chen K C, Ng M M, et al. Expression of plasmid-based shRNA against the E1 and nsP1 genes effectively silenced Chikungunya virus replication. PLoS One, 2012, 7: e46396
[9]  76 Alfonso V, Maroniche G A, Reca S R, et al. AcMNPV core gene ac109 is required for budded virion transport to the nucleus and for occlusion of viral progeny. PLoS One, 2012, 7: e46146
[10]  77 Nagel C H, Dohner K, Binz A, et al. Improper tagging of the non-essential small capsid protein VP26 impairs nuclear capsid egress of Herpes simplex virus. PLoS One, 2012, 7: e44177
[11]  78 Hung T, Zhou J Y, Tang Y M, et al. Identification of Hantaan virus-related structures in kidneys of cadavers with haemorrhagic fever with renal syndrome. Arch Virol, 1992, 122: 187-199
[12]  79 Friedlaender M, Moore D H, Koprowski H. Studies with the electron microscope of virus-host relationships in Ehrlich ascites tumor cells. II. The localization and possible development of anopheles A virus within the endoplasmic reticulum of the host cell. J Exp Med, 1955, 102: 371-378
[13]  80 Friedlaender M, Moore D H, Love R, et al. Studies with the electron microscope of virus-host relationships in Ehrlich ascites tumor cells. I. The identification and structure of anopheles A virus. J Exp Med, 1955, 102: 361-370
[14]  81 Ke P Y, Chen S S. Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro. J Clin Invest, 2011, 121: 37-56
[15]  82 Geisbert T W, Jahrling P B. Differentiation of filoviruses by electron microscopy. Virus Res, 1995, 39: 129-150
[16]  83 Gasper-Smith N, Crossman D M, Whitesides J F, et al. Induction of plasma (TRAIL), TNFR-2, Fas ligand, and plasma microparticles after human immunodeficiency virus type 1 (HIV-1) transmission: implications for HIV-1 vaccine design. J Virol, 2008, 82: 7700-7710
[17]  84 Doane F W, Anderson N, Chao J, et al. Two-hour embedding procedure for intracellular detection of viruses by electron microscopy. Appl Microbiol, 1974, 27: 407-410
[18]  85 Visser C E, Voute A B, Oosting J, et al. Microwave irradiation and cross-linking of collagen. Biomaterials, 1992, 13: 34-37
[19]  86 Webster P. Microwave-assisted processing and embedding for transmission electron microscopy. Methods Mol Biol, 2007, 369: 47-65
[20]  87 Ong H, Chandran V. Identification of gastroenteric viruses by electron microscopy using higher order spectral features. J Clin Virol, 2005, 34: 195-206
[21]  88 Zhang R, Hryc C F, Cong Y, et al. 4.4 A cryo-EM structure of an enveloped alphavirus Venezuelan equine encephalitis virus. EMBO J, 2011, 30: 3854-3863
[22]  89 Malet H, Canellas F, Sawa J, et al. Newly folded substrates inside the molecular cage of the HtrA chaperone DegQ. Nat Struct Mol Biol, 2012, 19: 152-157
[23]  90 Liu J, Bartesaghi A, Borgnia M J, et al. Molecular architecture of native HIV-1 gp120 trimers. Nature, 2008, 455: 109-113
[24]  91 Provencher S W, Vogel R H. Three-dimensional reconstruction from electron micrographs of disordered specimens. I. Method. Ultramicroscopy, 1988, 25: 209-221
[25]  92 Sougrat R, Bartesaghi A, Lifson J D, et al. Electron tomography of the contact between T cells and SIV/HIV-1: implications for viral entry. PLoS Pathog, 2007, 3: e63
[26]  93 Subramaniam S, Bartesaghi A, Liu J, et al. Electron tomography of viruses. Curr Opin Struct Biol, 2007, 17: 596-602
[27]  94 Vogel R H, Provencher S W. Three-dimensional reconstruction from electron micrographs of disordered specimens. II. Implementation and results. Ultramicroscopy, 1988, 25: 223-239
[28]  95 Ryner M, Str?mberg J O, S?derberg-Nauclér C, et al. Identification and classification of human cytomegalovirus capsids in textured electron micrographs using deformed template matching. Virol J, 2006, 3: 57
[29]  96 Taube S, Rubin J R, Katpally U, et al. High-resolution x-ray structure and functional analysis of the murine norovirus 1 capsid protein protruding domain. J Virol, 2010, 84: 5695-5705
[30]  97 Carnall J M, Waudby C A, Belenguer A M, et al. Mechanosensitive self-replication driven by self-organization. Science, 2010, 327: 1502-1506
[31]  98 Morgan G W, Hollinshead M, Ferguson B J, et al. Vaccinia protein F12 has structural similarity to kinesin light chain and contains a motor binding motif required for virion export. PLoS Pathog, 2010, 6: e1000785
[32]  99 Cong Y, Baker M L, Jakana J, et al. 4.0-A resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proc Natl Acad Sci USA, 2010, 107: 4967-4972
[33]  67 Romero-Brey I, Merz A, Chiramel A, et al. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog, 2012, 8: e1003056
[34]  101 Austin S K, Dowd K A, Shrestha B, et al. Structural basis of differential neutralization of DENV-1 genotypes by an antibody that recognizes a cryptic epitope. PLoS Pathog, 2012, 8: e1002930
[35]  100 Levy H C, Bostina M, Filman D J, et al. Catching a virus in the act of RNA release: a novel poliovirus uncoating intermediate characterized by cryo-electron microscopy. J Virol, 2010, 84: 4426-4441
[36]  8 Hazelton P R, Gelderblom H R. Electron microscopy for rapid diagnosis of infectious agents in emergent situations. Emerg Infect Dis, 2003, 9: 294-303
[37]  9 Nzounza P, Chazal M, Guedj C, et al. The scaffolding protein Dlg1 is a negative regulator of cell-free virus infectivity but not of cell-to-cell HIV-1 transmission in T cells. PLoS One, 2012, 7: e30130
[38]  10 Fontana J, Cardone G, Heymann J B, et al. Structural changes in influenza virus at low pH characterized by cryo-electron tomography. J Virol, 2012, 86: 2919-2929
[39]  11 Flewett T H, Beards G M, Brown D W, et al. The diagnostic gap in diarrhoeal aetiology. Ciba Found Symp, 1987, 128: 238-249
[40]  12 Kausche G A, Pfankuch E, Ruska H. Die Sichtbarmachung von pflanzlichem Virus im übermikroskop. Naturwissenschaften, 1939, 27: 292-299
[41]  13 Hung T, Yao J E, Li W Z, et al. Ultrustructure and Electron Microscopy in Biological Medicine. Beijing: Science Press, 1980
[42]  14 Knipe D M, Howley P M, Griffin D E, et al. Fields’ Virology. 5th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2006
[43]  15 Hung T. Atlas of Hemorrhagic Fever with Renal Syndrome. Beijing: Science Press, 1988
[44]  16 Monastyrska I, Ulasli M, Rottier P J, et al. An autophagy-independent role for LC3 in equine arteritis virus replication. Autophagy, 2013, 9: 164-174
[45]  17 Doane F W. Virus morphology as an aid for rapid diagnosis. Yale J Biol Med, 1980, 53: 19-25
[46]  18 Biel S S, Nitsche A, Kurth A, et al. Detection of human polyomaviruses in urine from bone marrow transplant patients: comparison of electron microscopy with PCR. Clin Chem, 2004, 50: 306-312
[47]  19 Hartjen P, Frerk S, Hauber I, et al. Assessment of the range of the HIV-1 infectivity enhancing effect of individual human semen specimen and the range of inhibition by EGCG. AIDS Res Ther, 2012, 9: 2
[48]  20 Hung T, Xia S M, Song G, et al. Viruses of classical and mild forms of haemorrhagic fever with renal syndrome isolated in China have similar bunyavirus-like morphology. Lancet, 1983, 1: 589-591
[49]  21 Van Regenmortel M H, Fauquet C M. Virus Taxonomy: Classification and Nomenclature of Viruses: Seventh report of the International Committee on Taxonomy of Viruses. San Diego: Academic Press, 2000
[50]  22 Schroeder J A, Gelderblom H R, Hauroeder B, et al. Microwave-assisted tissue processing for same-day EM-diagnosis of potential bioterrorism and clinical samples. Micron, 2006, 37: 577-590
[51]  23 Anson M L, Stanley W M. Some effects of iodine and other reagents on the structure and activity of Tobacco mosaic virus. J Gen Physiol, 1941, 24: 679-690
[52]  38 Bishop R F, Davidson G P, Holmes I H, et al. Virus particles in epithelial cells of duodenal mucosa from children with acute non-bacterial gastroenteritis. Lancet, 1973, 2: 1281-1283
[53]  39 Johnson K M, Lange J V, Webb P A, et al. Isolation and partial characterisation of a new virus causing acute haemorrhagic fever in Zaire. Lancet, 1977, 1: 569-571
[54]  40 Goldsmith C S, Elliott L H, Peters C J, et al. Ultrastructural characteristics of Sin Nombre virus, causative agent of hantavirus pulmonary syndrome. Arch Virol, 1995, 140: 2107-2122
[55]  41 Zaki S R, Greer P W, Coffield L M, et al. Hantavirus pulmonary syndrome. Pathogenesis of an emerging infectious disease. Am J Pathol, 1995, 146: 552-579
[56]  42 Hyatt A D, Selleck P W. Ultrastructure of equine morbillivirus. Virus Res, 1996, 43: 1-15
[57]  43 Hyatt A D, Zaki S R, Goldsmith C S, et al. Ultrastructure of Hendra virus and Nipah virus within cultured cells and host animals. Microbes Infect, 2001, 3: 297-306
[58]  44 Bayer-Garner I B. Monkeypox virus: histologic, immunohistochemical and electron-microscopic findings. J Cutan Pathol, 2005, 32: 28-34
[59]  45 Wong A H, Cheng P K, Lai M Y, et al. Virulence potential of fusogenic orthoreoviruses. Emerg Infect Dis, 2012, 18: 944-948
[60]  46 Limonta D, Falcon V, Torres G, et al. Dengue virus identification by transmission electron microscopy and molecular methods in fatal dengue hemorrhagic fever. Infection, 2012, 40: 689-694
[61]  47 Wanat K A, Holler P D, Dentchev T, et al. Viral-associated trichodysplasia: characterization of a novel polyomavirus infection with therapeutic insights. Arch Dermatol, 2012, 148: 219-223
[62]  48 Rossmann M G. Crystallography, evolution, and the structure of viruses. J Biol Chem, 2012, 287: 9552-9559
[63]  49 Beniac D R, Melito P L, Devarennes S L, et al. The organisation of Ebola virus reveals a capacity for extensive, modular polyploidy. PLoS One, 2012, 7: e29608
[64]  50 Carter S D, Surtees R, Walter C T, et al. Structure, function, and evolution of the Crimean-Congo hemorrhagic fever virus nucleocapsid protein. J Virol, 2012, 86: 10914-10923
[65]  51 Van Rooyen C E, Scott G D. Smallpox diagnosis with special reference to electron microscopy. Can J Public Health, 1948, 39: 467-477
[66]  52 Chinese Academy of Medical Science. Atlas of Electron Micrographs for Medical Biologic. 5th ed. Beijing: Science Press, 1978
[67]  53 Chen H, Williams H N. Sharing of prey: coinfection of a bacterium by a virus and a prokaryotic predator. MBio, 2012, 3: e00051-12
[68]  54 Prusiner S B. Prions. Proc Natl Acad Sci USA, 1998, 95:13363-13383
[69]  55 Prusiner S B. Prion Biology and Diseases. New York: Cold Spring Harbor Laboratory Press, 2004
[70]  56 Zhang Y, He J S, Wang X, et al. Administration of amyloid-beta42 oligomer-specific monoclonal antibody improved memory performance in SAMP8 mice. J Alzheimers Dis, 2011, 23: 551-561
[71]  57 何金生, 张莹, 洪涛. 靶向PrP及Ab的治疗性抗体研究进展. 中国科学: 生命科学, 2010, 40: 679-684
[72]  58 Zhang Y, Wang X, He J S, et al. Preparation and characterization of a monoclonal antibody with high affinity for soluble Abeta oligomers. Hybridoma, 2009, 28: 349-354
[73]  59 Isas J M, Luibl V, Johnson L V, et al. Soluble and mature amyloid fibrils in drusen deposits. Invest Ophthalmol Vis Sci, 2010, 51: 1304-1310
[74]  60 Jones P H, Mehta H V, Maric M, et al. Bone marrow stromal cell antigen 2 (BST-2) restricts mouse mammary tumor virus (MMTV) replication in vivo. Retrovirology, 2012, 9: 10
[75]  61 Hansman G S, Taylor D W, McLellan J S, et al. Structural basis for broad detection of genogroup II noroviruses by a monoclonal antibody that binds to a site occluded in the viral particle. J Virol, 2012, 86: 3635-3646
[76]  62 Sanchez E G, Quintas A, Perez-Nunez D, et al. African swine fever virus uses macropinocytosis to enter host cells. PLoS Pathog, 2012, 8: e1002754
[77]  63 Schelhaas M, Shah B, Holzer M, et al. Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosi. PLoS Pathog, 2012, 8: e1002657
[78]  64 Patterson S, Russell W C. Ultrastructural and immunofluorescence studies of early events in adenovirus-HeLa cell interactions. J Gen Virol, 1983, 64: 1091-1099
[79]  65 Liu Z, Liu S, Cui J, et al. Transmission electron microscopy studies of cellular responses to entry of virions: one kind of natural nanobiomaterial. Int J Cell Biol, 2012, 2012: 596589
[80]  66 Stoneham C A, Hollinshead M, Hajitou A. Clathrin-mediated endocytosis and subsequent endo-lysosomal trafficking of adeno-associated virus/phage. J Biol Chem, 2012, 287: 35849-35859
[81]  1 Palese P, Wang T T. H5N1 influenza viruses: facts, not fear. Proc Natl Acad Sci USA, 2012, 109: 2211-2213
[82]  2 Woo P C, Lau S K, Wong B H, et al. Feline morbillivirus, a previously undescribed paramyxovirus associated with tubulointerstitial nephritis in domestic cats. Proc Natl Acad Sci USA, 2012, 109: 5435-5440
[83]  3 Biel S S, Gelderblom H R. Diagnostic electron microscopy is still a timely and rewarding method. J Clin Virol, 1999, 13: 105-119
[84]  4 Biel S S, Gelderblom H R. Electron microscopy of viruses. In: Cann A J, ed. Virus Culture—A Practical Approach. Oxford: Oxford University Press, 1999. 111-147
[85]  5 Goldsmith C S, Miller S E. Modern uses of electron microscopy for detection of viruses. Clin Microbiol Rev, 2009, 22: 552-563
[86]  6 Peiris J S, Lai S T, Poon L L, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet, 2003, 361: 1319-1325
[87]  7 宋敬东, 屈建国, 鲁茁壮, 等. 提高负染法透射电镜检测病毒灵敏度的制样方法及应用. 病毒学报, 2010, 26: 410-413
[88]  24 Mudd S, Polevitzky K, Anderson T F, et al. Bacterial morphology as shown by the electron microscope. ii. The bacterial cell-wall in the genus Bacillus. J Bacteriol, 1941, 42: 251-264
[89]  25 Almeida J D, Waterson A P. Some implications of a morphologically oriented classification of viruses. Arch Gesamte Virusforsch, 1970, 32: 66-72
[90]  26 Hung T, Xia S M, Zhao T X, et al. Morphological evidence for identifying the viruses of hemorrhagic fever with renal syndrome as candidate members of the Bunyaviridae family. Arch Virol, 1983, 78: 137-144
[91]  27 Nagler F P, Rake G. The use of the electron microscope in diagnosis of variola, vaccinia, and varicella. J Bacteriol, 1948, 55: 45-51
[92]  28 Welch A B. Purification, morphology and partial characterization of a reovirus-like agent associated with neonatal calf diarrhea. Can J Comp Med, 1971, 35: 195-202
[93]  29 Reagan R L, Brueckner A L. Morphological observations by electron microscopy of the Lansing strain of poliomyelitis virus after propagation in the Swiss albino mouse. Tex Rep Biol Med, 1952, 10: 425-428
[94]  30 Gust I D, Kaldor J, Cross G F, et al. Virus-like particles associated with a faecal antigen from hepatitis patients and with Australia antigen. Aust J Exp Biol Med Sci, 1971, 49: 1-9
[95]  31 Kapikian A Z, Wyatt R G, Dolin R, et al. Visualization by immune electron microscopy of a 27-nm particle associated with acute infectious nonbacterial gastroenteritis. J Virol, 1972, 10: 1075-1081
[96]  32 Melnick J L, Phillips C A. Enteroviruses: vaccines, epidemiology, diagnosis, classification. Crit Rev Cl Lab Sci, 1970, 1: 87-118
[97]  33 Nicholls J M, Poon L L, Lee K C, et al. Lung pathology of fatal severe acute respiratory syndrome. Lancet, 2003, 361: 1773-1778
[98]  34 Hung T, Chen G M, Wang C G, et al. Rotavirus-like agent in adult non-bacterial diarrhoea in China. Lancet, 1983, 2: 1078-1079
[99]  35 Hung T, Chen G M, Wang C G, et al. Waterborne outbreak of rotavirus diarrhoea in adults in China caused by a novel rotavirus. Lancet, 1984, 1: 1139-1142
[100]  36 Dane D S, Cameron C H, Briggs M. Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet, 1970, 1: 695-698
[101]  37 Feinstone S M, Kapikian A Z, Purceli R H. Hepatitis A: detection by immune electron microscopy of a viruslike antigen associated with acute illness. Science, 1973, 182: 1026-1028

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133